
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

07-03-2002 * MERGEFORMAT
2. REPORT TYPE

Conference Proceedings
3. DATES COVERED (From – To)
9 September 2002 - 11 September 2002

5a. CONTRACT NUMBER
F61775-02-WF057

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

1st International Conference on Artificial Immune Systems ICARIS 2002

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Conference Committee

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Kent at Canterbury
University of Kent at Canterbury
Canterbury, Kent CT2 7NF
UK

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

CSP 02-5057

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Final Proceedings for 1st International Conference on Artificial Immune Systems. ICARIS 2002, 9 September
2002 - 11 September 2002

Artifcial immune systems, artificial intelligence, robot control, intrusion detection, data mining, self-repair, machine
learning.

15. SUBJECT TERMS
EOARD, Artificial Intelligence, Intelligent Systems, Information Protection

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Neal D. Glassman
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

230 19b. TELEPHONE NUMBER (Include area code)

+44 (0)20 7514 4437

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Proceedings of ICARIS 2002
Editors: J. Timmis and P.J. Bentley

SESSION I: APPLICATIONS OF AIS

 A Multilayered Immune System for Hardware Fault Tolerance within an
Embryonic Array.
R.O. Canham & A.M. Tyrrell

3 – 12

Extending the Computer Defense Immune System: Network Intrusion Detection
with a Multiobjective Evolutionary Programming Approach.
K.P. Anchor, J.B. Zydallis, G.H. Hunch and G.B. Lamont

13 – 22

AISIMAM - An Artificial Immune System Based Intelligent Multi-Agent
Model and its Application to a Mine Detection Problem.
S. Sathyanath and F. Sahin

23 – 32

Immunocomputing for Bioarrays.
A.O. Tarakanov, L.B. Goncharova, T.V. Gupalova, S.V. Kvachev and A.V. Sukhorukov

33 – 41

Evolving FPGA-based Robot Controllers using an Evolutionary Algorithm.
R.A. Krohling, Y. Zhou and A.M. Tyrrell

42 – 47

SESSION II: MEMORY AND AIS

Exploiting the Analogy Between Immunology and Sparse Distributed
Memories: A System for Clustering Non-stationary Data
E. Hart and P. Ross

48 – 57

Immune Memory in the Dynamic Clonal Selection Algorithm
J. Kim and P. Bentley

58 – 66

Stable Clusters Formation in an Artificial Immune System
S. Wierzchon and U. Kuzelewska

67 – 74

An Artificial Immune System for Continuous Analysis of Time-Varying Data
M. Neal

75 – 84

SESSION III: SELF OR NON-SELF?

 Negative Selection: How to Generate Detectors
M. Ayara, J. Timmis, R. de Lemos, L. de Castro and R. Duncan

85 – 94

Anomaly Detection Using Negative Selection Based on the r-contiguous
Matching Rule
S. Singh

95 – 102

Self-Assertion versus Self-Recognition: A Tribute to Francisco Varela
H. Bersini

103 – 108

http://www.aber.ac.uk/icaris-2002/Proceedings/paper-06/CanhamTyrrellFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-06/CanhamTyrrellFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-32/Anchor-ICARIS-2002.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-32/Anchor-ICARIS-2002.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-28/icarisfinal-final.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-28/icarisfinal-final.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-03/paper03.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-02/Icaris2002_paper2_final1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-34/emmah-icaris.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-34/emmah-icaris.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-17/icaris1_camera.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-13/paper131.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-01/neal.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-35/ayara-etal.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-24/singh02_anomdet1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-24/singh02_anomdet1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/bersini/Self.pdf

SESSION IV: CONCEPTUAL PAPERS

 Artificial Immune Systems as Complex Adaptive Systems
P.A. Vargas, L. de Castro and F. von Zuben

109 – 117

Building a Robust Distributed Artificial Immune Systems
J. Kaers, R. Wheeler and H. Verrelst

118 – 125

Information Immune Systems
D. Chao and S. Forrest

126 – 134

The Danger Theory and Its Application to Artificial Immune Systems
U. Aickelin and S. Cayzer

135 – 142

Artificial Immune Systems for Classification: Some Issues
G. Marwah and L. Boggess

143 – 147

On the Effects of Idiotypic Interactions for Recommendation Communities in
Artificial Immune Systems
S. Cayzer and U. Aickelin

148 – 154

An Artificial Immune System as a Recommender for Web Sites
T. Morrison and U. Aickelin

155 – 163

SESSION V: LEARNING STRATEGIES

Artificial Immune Recognition System (AIRS): Revisions and Refinements
A. Watkins and J. Timmis

164 – 172

A Model of Gene Library Evolution in the Dynamic Clonal Selection Algorithm
J. Kim and P. Bentley

173 – 180

From Optimization to Learning in Learning in Changing Environments: The
Pittsburgh Immune Classifier System
A. Gaspar and B. Hirsbrunner

181 – 190

SESSION VI: HYBRIDS AND AUGMENTATIONS

Neuro-Immune and Self-Organising Map Approaches to Anomaly Detection: A
Comparison
F. Gonzalez and D. Dasgupta

191 – 199

An Approach to Solve Multiobjective Optimization Problems Based on an
Artificial Immune System
C. Coello Coello and N. Cruz Cortes

200 – 209

Immunocomputing for Complex Interval Objects
S.P. Sokolva and L. Sokolova

210 –218

Hierarchy and Convergence of Immune Networks: Basic Ideas and Preliminary
Results
L.N. de Castro and J. Timmis

219 – 227

http://www.aber.ac.uk/icaris-2002/Proceedings/paper-25/Vargas_etal.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-23/robust_dais.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-04/iis/icaris.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-14/paper14.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-21/AIRS.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-16/paper16.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-16/paper16.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-15/paper15.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-31/watkins-timmis.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-18/icaris2_camera.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-30/ACCEPTED.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-30/ACCEPTED.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-20/icarisGonzalezDasguptaFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-20/icarisGonzalezDasguptaFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-22/icaris02-final.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-22/icaris02-final.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-19/S-L-S%20(1)(final)1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-10/decastro_timmis.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-10/decastro_timmis.pdf

A MULTILAYERED IMMUNE SYSTEM FOR HARDWARE
FAULT TOLERANCE WITHIN AN EMBRYONIC ARRAY.

R.O. Canham A.M. Tyrrell
Department of Electronics.

The university of York
Heslington, York. UK

roc100@ohm.york.ac.uk

A MULTILAYERED IMMUNE SYSTEM FOR HARDWARE
FAULT TOLERANCE WITHIN AN EMBRYONIC ARRAY.

Abstract
Biology demonstrates high levels of fault tolerance in
all instances. This paper documents a demonstration
system that takes inspiration from the immune system
and embryonic processes to acquire some of these fault
tolerant properties in hardware circuits. A multi-layer
immune system is used as fault detection; a negative
selection algorithm is used at a system level to identify
non-self states. These are localised by further tests.
Reconfiguration of the embryonic array accommodates
the faults located. The detector set for the negative
selection algorithm is currently derived by hand,
although appropriate learning algorithms are identified
and commented upon.

1 INTRODUCTION
As systems become more complex it becomes
increasingly difficult to provide comprehensive fault
testing to determine the validity of the system. Hence
faults can remain in a system which can manifest
themselves as errors. Furthermore, faults may be
introduced into a hardware system from external
sources such as electromagnetic interference.
Components within a system can die; no transistor will
function forever. These faults can ultimately cause a
system to fail. The ability of a system to function in the
presence of faults, to become fault tolerant, is a
continually increasing area of research.

Through millions of years of refinement biology has
produced many living creatures that are remarkably
fault tolerant. They can survive injury, damage, wear
and tear, and are under continual attack from other
living entities in the form of infectious pathogens. This
paper details a fault tolerant circuit that takes its
inspiration from some of the fault tolerance techniques
found in biology.

A hardware multilayered artificial immune system is
used as a fault detection system upon an embryonic
array (Tempesti 1998, Ortega 2000) which can then
accommodate the faults. The embryonic array is a

homogeneous array of logic units (called cells) that use
their location within the array to extract appropriate
configuration data. Each cell contains all the
configuration details of all cells and hence can perform
any cell’s function as required.

This is part of the POEtic project which aims to produce
a circuit that combines other forms of bio-inspired
techniques (POEtic 2002). These include phylogeny
(P), the ability of a population of individuals to change
from one generation to the next in an evolutionary
manner, ontogeny (O), the developmental processes of
an organism’s growth. Multi-cellular organisms grow
from a single cell that contains all the necessary
information, the current implementation of which is the
embryonic array. Finally epigenesis (E), the learning
process of an individual. This can not only be found in
the nervous system but also the some areas of the
immune system which learn to recognise pathogens.

Ultimately the PEOtic device will be produced in
silicon using ASIC (Application Specific Integrated
Circuit) fabrication. However, this paper details the
initial stages of just the immune system upon an
embryonic array. Although only simulated results are
given in this paper the system will shortly be
implemented in a commercial Field Programmable Gate
Array (FPGA).

2 BACKGROUND INFORMATION

2.1 ARTIFICIAL IMMUNE SYSTEMS
The immune system found in higher organisms is a
multilayered, distributed system that is robust and can
identify numerous pathogens and other harmful effects.
Many of the properties found in such a system would be
most advantageous in many computer and other
systems. Artificial immune systems do just this. They
have been applied to many different application areas,
such as: optimisation techniques (Hajela 1999, Endo

1998), novel implementations of neural networks
(Hoffmann 1986), anomaly detection (Kim 1999,
Forrest 1997), pattern recognition (Hunt 1996,
Dasgupta 1999) inductive problem solving (Slavov
1998, Nikolaev 1999) control (Ishiguro 1997),
industrial process monitoring (Ishiguru 1994, Ishida
1993), fault tolerant software (Xanthakis 1996) and
hardware fault tolerance (immunotronics) (Bradley
2000a, 2000b, 2001, 2002). Further information,
surveys and reviews can be found in Dasgupat and
Attoh-Okine (Dasgupta 1997), de Castro (Castro 1999)
and de Castro and Von Zuben (Castro 2000).

Of the many algorithms and systems researched, many
make use of the negative selection algorithm.
Developed by Forrest et al. (Forrest 1994), the negative
selection algorithm is based upon the detection of non-
self from self, as found within the immune system.
Various immune cell types (such as lymphocytes) have
receptors that allow them to bind to specific sets of
proteins. The maturation of each lymphocyte cell
involves the presentation of proteins that are naturally
present within the body (self). Lymphocytes that bind
with them are destroyed. Hence, when released within
the body, binding to a protein indicates it is non-self and
may be a harmful pathogen. See Janeway (1999),
Kimball (2002), de Castro (1999) and Alberts (1994)
for more details of immune systems. Forrest uses a
string to represent the systems state; partial matching of
these strings is used to distinguish between self and
non-self. This can be considered similar to the binding
of some lymphocytes. The negative selection algorithm
can be summarised as follows:

• A set of self strings, S, are defined. Each is of a
length, l, of a finite alphabet. The set of strings
can be gathered during operation in an
application dependent manner to describe the
state of the application.

• A set of detectors, R, is generated which fails
to partially match any member of the self set,
S. The partial match used by Forrest is defined
as a match of c contiguous bits within the
string’s length.

• The state of the device under test is monitored.
Under normal operation this would generate a
member of the self set, S. However, an
abnormal process may generate a non-member
of S which can be matched by a member of the
detector set R.

The detector sets have been generated by a random
process, more efficient algorithms (D'haeseleer 1995)
and evolutionary processes (Kim 1999), including
library selection (Hunt 1996). Detectors that match self
are destroyed in a similar manner to the biological
immune system.

2.2 IMMUNOTRONICS
All the applications listed are software implementations
of an artificial immune system. The only hardware
implementation found to date is Immunotronics

(immune + electronics) by Bradley and Tyrrell (Bradley
2000a, 2000b, 2001, 2002). This makes use of a
negative selection algorithm to identify faults within a
hardware circuit, specifically a finite state machine. The
current state, next state and the current inputs are used
to define the current transition of the machine. Some of
the transitions are not present in normal, error free
operation and so are considered as non-self.
Identification of such non-self indicates the presents of
an error.

A 4 bit BCD counter implemented upon a Xilinx Virtex
FPGA was immunised. The detector set was generated
offline using both random techniques and the greedy
algorithm (D'haeseleer 1995). The detectors themselves
were implemented using a content addressable memory
(CAM) (Xilinx 1999). This allows all the elements
within the memory to be compared with the current
state very quickly. Partial matching based upon the
number of contiguous bits was employed. Experimental
results showed that a fault coverage of 93% could be
achieved with 103 detectors, which constitutes 10% of
all possible error, and therefore detector, states.

This is very impressive but requires a CAM of 103
words, each 10 bits in width. This is vast in size
compared to the counter that was being immunised.
However, the size of the detectors is not dependant on
the complexity of the circuit being immunised. It might
be considered that the counter is the wrong granularity.
Also a biological immune system never tries to provide
a fault free functionality. The underlying system
requires some inherent fault tolerance; indeed the
immune system will typically kill off infected cells. The
biological entity can easily accommodate this due to the
vast quantity of redundancy.

It is therefore more appropriate to use an immune
system at a system, or sub-system level. It would not
now be used to identify every error, but unusual
situations that indicate something erroneous has
occurred. If a robot controller is considered, the
immune system would provide monitoring for situations
that should not occur. This may include situations such
as a robot that is heading for an object.

2.3 EMBRYONICS
All multi-cellular organisms start life as a single cell.
This cell divides repeatedly to generate numerous
identical copies of itself. Each cell contains all the
information necessary to create the entire entity – the
genotype. As the number of cells increases
differentiation takes place; different cells start to change
to provide different, specialised functionality. The
appropriate section of the genotype (the appropriate
gene or genes) is selected based upon the cell’s position
as well as other factors.

Embryonics (embryo + electronics) is inspired by the
cloning and differentiation of cells within multi-cellular
organisms to generate electronic circuits with some of
the properties of such organisms (Tempesti 1998,
Ortega 2000, Prodan 2001, Stauffer 2001). An

embryonic array consists of a homogeneous array of
cells, each containing the full specification of the
device, together with a processing element and control.
The coordinate position of each cell is calculated
dependent upon its neighbours; this is used to perform
the appropriate section of the genotype. Figure 1 gives
an example of some of the major elements of a generic
array. Implementations to date typically use a very
simple functional unit (a two input multiplexer),
although a number of these units have been included in
a cell. These sub-sections of the cell have been termed
molecules.

Errors within the array are accommodated by killing the
particular cell. The routing becomes transparent and the
coordinate system no longer increments, thus the next
cell takes over the functionality of the faulty cell. The
array contains spare cells that are not utilised until a
fault occurs.

To maintain cellular alignment removing the row or
column that contains the error is typical (see Figure 2).
It should be reiterated that no configuration data has to
be recalculated or moved; just the change in coordinate
is all that is required for the cells to reconfigure
themselves. Fault avoidance has also been performed at
the molecular level. As many faults as there are spare
cells can be handled.

Figure 1: Embryonic Array

Implementations to date use replication of the
functional units and a comparator to provide built in self
tests (BISTS). At present it is assumed that the routing
and control are fault free.

Figure 2: Accommodation of Fault

3 THE SYSTEM

3.1 OVERVIEW
The new system proposed uses a number of layers to
provide fault detection using the immune system for
inspiration. The top level is a negative selection
algorithm that learns and is analogous to the acquired
immune system. This can work at either a system or
subsystem level and monitors the state of the system for
non-self. When non-self is identified the whole system
could be relocated by killing the cells within the
embryonic array. However, such resources are rarely
available and so a second layer is used to localise the
fault. This could take many forms; here a number of
configurations are loaded which perform a number of
tests. The device could be tested in sections with a
reduced functionality, or in a roving self-test area
(STAR) (Emmert 2000, Abramovic 2001). In this
example the device is briefly placed in a safe state and
taken offline while the testing takes place, in a similar
manner to Sundararajan (2001). Cells that have errors
are identified and killed. These tests do not learn and
hence could be considered to be mapped to the
biological innate immune system.

A simple embryonic array was generated to provide the
ability to reconfigure around faults that were found. The
criteria of the array was to provide suitable functionality
to implement the immune system and to enable it to be
implemented on a commercial FPGA. Therefore it may
bear little resemblance to the embryonic array that will
be produced in the final POEtic tissue. The immune
system will provide testing for many of the areas that
current implementations of embryonics assume to be
fault free.

A simple example application is used to demonstrate
the system. This takes the form of the simplest of robot
controllers which has three single bit inputs and two
single bit outputs; the inputs represent the detection of
an object to the robot’s left, front and right. The outputs
represent signals to the robot’s left and right motors.
Hence a signal on the left motor will turn the device to
the right, both motors will cause it to travel forward and

Origin

Cell
communications

Coordinate
communications

Processing
Element

CELL CELL CELL

CELL CELL CELL

Address

Routing
IO

Genotype and
Address Decoding

Spare

Cells

Faulty
Cell

Dead Cell
Transparent

column

Reconfigured

 0 1 2 X 0 X 1 2
Column coordinates

a signal on the right motor will turn the robot to the left.
This is shown in Figure 3.

Figure 3: Test System

The nature of the controller is not important; in this
demonstration it took the form of a simple lookup table
which was driven by a linear feedback shift register to
generate a random, complete set of inputs.

When the outputs are considered with the inputs there
are a number of states that would be considered as
normal (self-states) and those that would be considered
as abnormal (non-self). An example of this would be
the detection of a object ahead with both motors driving
the robot into it. A complete set of these non-self states
is given in Table 1. In this simple example the states
were determined by hand, although an automated
learning capability is ideal. Details of learning
processes are given in section 5.1.

Input states Outputs

Left Ahead Right Left Right

0 0 1 1 0

0 1 0 1 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

Table 1: Non-self Sates

3.2 THE EMBRYONIC ARRAY
The embryonic array is based upon the hardware-
orientated arrays produced by Ortega and Tyrrell
(Ortega 2000). However, many changes were required.
Each cell of the array is constructed from a preset
number of molecules. Dedicated hardware is used to

generate other cell functionality, such as address
calculation, gene selection and maintaining the cell’s
state. Each molecule contains a four input lookup table
(LUT) and a D-type flip-flop. A three bit bus connects
each molecule to its four nearest neighbours via a
switch block that provides full connectivity. No direct
connections (that by-passed the switch block) are
present between molecules. The output of the
molecule’s LUT or flip-flop can also be connected to
any of the switch block’s outputs. Each input of the
LUT can be connected to any of the switch block’s
inputs. See Figure 4. There is no distinction between
neighbouring molecules within the same cell and the
neighbouring cells.

The configuration of each molecule is controlled by a
configuration register; each bit of this register is
implemented using a 16 bit shift register / 4 bit LUT
(i.e. the basic LUT of many FPGAs). Hence, each bit
has up to 16 possible options to be selected from. All
configuration registers of a cell are linked into a
continuous shift register which will contain the
configuration of all the cells, i.e. the genotype of the
array. Therefore, up to 16 different configurations, or
genes, can be stored and the appropriate gene selected
dependent upon the cell’s location and state. The
genotype is distributed, in parallel to each cell, to
configure the whole array.

Figure 4: Molecule Block Diagram. Note the output can

bypass the D-type if required.

The coordinates for each cell are calculated based upon
its neighbours below and to its left; each cell increments
the address in the x and y axis which is then propagated
on. A mapping, from the coordinates to the selection of
the actual gene used, is provided via a lookup table. The
mapping data is present at the head of the genotype and
allows the same gene to be present in more than one, or
no cells, as required.

Faults are accommodated by typically killing the entire
column in which the faulty cell is present. A gene is

Controller

Object Detection

Left Centre Right

Left Motor Right Motor

Motor Drive

LUT D-type

Switch Block

Input Muxes

Input and Output Buses

selected that sets all the switch blocks to be transparent
and the cell coordinates are no longer incremented.
However, it is also possible to kill a row. This is
necessary if the cell will not die appropriately or there is
a fault present in the transparency of the cell. This
allows a cell to be completely removed, no matter the
degree of damage (see Figure 5). Each molecule has the
ability to use its functional output to indicate that the
cell should die and the row, or column should go
transparent. This is controlled via another configuration
bit.

Figure 5: Possible reconfigurations to avoid faults

Control of the cell’s state is achieved by a small state
machine.

3.3 THE ARTIFICIAL IMMUNE SYSTEM
As stated, the fault detection takes the form of a number
of layers. The top-most layer is the implementation of a
negative selection algorithm.

3.3.1 The Negative Selection Algorithm and its
Implementation

Using the negative selection algorithm to identify
unusual situations at system level reduces the number of
error states dramatically. In this example the number is
reduced to such an extent that there are more self states
than non-self states. This makes partial matching
between detectors and the current state no longer
possible, since the partial match is more likely to match
with another self state than non-self state. The number
of holes becomes too large to be practical, even with
appropriate changes in the state representations
(Hofmeyr 1999). The nature of the partial match within
the negative selection algorithm (and in biological
systems) is very powerful and, some may argue, a key
component of the system. It allows a greatly reduced set
of detectors to identify a wider range of pathogens; the
clonal selection process (the process by which the
lymphocytes are chosen for replication) also requires a
degree of match to function correctly. However, when
implemented in hardware there are a number of
constraints and restrictions that prevent full advantage
of the partial matching. The luxury of complex software
algorithms is not available. Hardware systems tend to
maximise the hardware present and so non-used states
or conditions are minimised. Hence, most situations
would not produce the very high ratios of self to non-

self that occur in biology and provide the great power of
partial matching.

The reduced number of non-self states, and the small
number of bits in this example allows for complete
detector sets which are still very small. With a detector
of only five bits a complete comparison can be
implemented in a simple five bit lookup table
(implemented in three 4 bit LUTs). This compares
favourably with the typical CAM implementation used
in Bradley (2001) which required a LUT for every two
bits of a detector and used over 100 detectors.
The system still identifies non-self states which is the
fundamental aspect of the algorithm.

The implementation of the detectors is very simple as
can be seen in Figure 6. The three LUTs provide the
logic necessary to produce an error output for the non-
self states shown in Table 1.

Figure 6: System block diagram

The array simulated used 10 molecules in a cell (two
columns of five) which allowed the linear feedback
shift register and LUTs for the controller to be
implemented in one cell and the detectors in a second
cell.

3.3.2 Innate Layer
When a non-self state is identified the error must be
located and accommodated. This is achieved by
reconfiguring the device and performing test patterns at
a low level. The number and type of tests performed can
generate an exhaustive test sequence.

Replication of the functional units within the embryonic
array has been employed in previous implementations.
This provides fault tolerance of the functional units with
acceptable overheads and could be included as an
additional layer (in biology, cells continually check
their functionality and will die by apoptosis if an error
is located, Kimball 2002). The tests would therefore
concentrate on the routine and switching of the array,
which is much harder to produce by replication. These
would be similar in nature to the offline test detailed in

Cell dies and
column becomes

transparent

If cell does not
correctly become

transparent the row can
be removed as well

Controller

LUTs provide logic for
complete coverage of

all states

Detector
inputs

LUT

LUT

LUT

Motor Drive
Signals

Error
Signal

Sundararajan (2001) or those performed by the roving
star (Emmert 2000, Abramovic 2001). In essence each
configuration of a switch block is induced using a
suitable test pattern generator and tester, as shown in
Figure 7. A large number of tests would be performed
in parallel, with the repetition of the same gene in a
number of the cells.

Figure 7: Example test configuration

The tests are typically kept within the cell which is
killed by the identification of an error within it. This
greatly simplifies any control or localisation needed to
reconfigure the device and avoid the fault. Some tests
require the data paths between cells to be included; this
too causes no complications since the whole column or
row is typically avoided.

With an appropriate architecture it would also be
possible to test the correct functionality of the cell’s
control and status and its ability to die. Hence all
aspects of the device could be tested.

A control process is necessary to carry out this
reconfiguration and error checking. On the final POEtic
device a microcontroller will be included within the
device which will be utilised. However, this generates a
large single point of failure. In an ultimate solution the
controller would be implemented within the array itself
which then offers all the fault tolerant protection
provided. It should be noted that unlike many other
FPGA fault tolerant techniques that use reconfiguration
to locate and/or avoid faults (such as Blanton 1998)
there is no complex reconfiguration calculation
required; this is all achieved by the embryonic array.
Hence, an integrated controller would be practical. With
a reasonable number of test configurations the memory
required to store them may become inappropriate.
However, the nature of the test genes is such that they
are very repetitious and so they could be simply
constructed from a number of small subsets of the gene.

Within the simulation of the test application the detector
set was replicated within its cell to prevent false
negatives. An inconsistent result from the two detector
sets causes the immune cell to be killed. Since this
example application implements the controller in a
single cell, any non-self detected causes that cell to be
killed and its column made transparent. However,
innate tests are performed to check the correct

transparency of the device. Failure of this test results in
the appropriate row being made transparent.

This transparency test requires two configurations.
These are shown in Figure 8 and Figure 9. Each row (of
three cells) is the same. In the first test, coordinate (0,0)
contains a gene A, while all the other cells use the gene
to make them transparent (as shown in Figure 8). This
generates a test pattern which passes the length of the
row and is mapped back again. The switching within
the test cell is such that the data passes through all
horizontal paths and switches to a test molecule at the
bottom of the cell. Notice that the test is repeated to
prevent an error in the test generating a false negative.
A second configuration is required to test the
transparency of the end cell, as shown in Figure 9. Gene
B is the same as A but it is mirrored in the x axis.

It is necessary for the routing to map the test signals
back; this can be achieved in the end cell or externally,
as shown.

Figure 8: Transparency test

If path produces
wrong pattern cell
will be killed by

molecule

Molecule

Cell

A Trans

A

Cell
Connection

Bus

Trans

Trans Trans

Cell with
gene A transparent

gene

3 bit bus

Test pattern
generator

switching

cell with
gene A

complete
array

molecules

Test Test

Test pattern
generator

Test

Route and
switching under

test

Figure 9: Second transparency test

4 RESULTS AND DISCUSIONS
Figure 10 shows a section of simulation of the circuit.
The circuit was written in synthesisable VHDL,
optimised for a Xilinx Virtex. Hence the circuit will
easily be implemented in hardware. The lower set of
traces is an expansion of a section of the upper. Here
the inputs and the outputs to the controller can be seen
(labelled “controller”). The lower three traces are the
detector signals and the upper two traces are the
appropriate response for the motor outputs. At time
5500ns a stuck at 1 fault is injected on the output of one
of the controller outputs (the upper on the trace). This
places the device in an error state and an error signal is
generated. This causes cell 0,0 to pass from an OK
state, through a brief reconfiguration state, to a dead
state. The selected gene goes from 0001 to 0000, the
transparent gene. The state of the device goes from
normal to test1. This can be seen more clearly in the
upper set of traces, showing a larger time scale. Both
test conditions are performed before returning to a
normal state. The test passes correctly and no further
action is performed. Notice that the controller output
was on cell 0,0 which, after the testing and
reconfiguration, remains at a logic level 0. Cell 1,0 has
now taken over the functionality of the controller. The
actual output of the device would remain the same.

A similar stuck at fault is injected in the simulation
shown in Figure 11. However, the fault is inserted on
the connection bus between molecules. This error can
not be avoided by a horizontal relocation since the stuck
at fault prevents the cell from becoming transparent.

It can be seen that at time 5500ns the fault is injected
and as before the cell is killed. The two test
configurations are loaded and the tests are performed.
This time the second test fails and the Y error line is
activated which induces the cell to die and for the row
to become transparent. The combined outputs of a
number of cells are shown in the lower three traces.
Before the error is introduced (and after the
configuration) the functionality of the controller is
performed by cell 0,0. This is labelled Output Active on
the figure. After the reconfiguration, cell 1,1 now
provides the correct output. Notice that cell 1,0, the cell
that was used in the previous example, is no longer used
since the y=0 row can not be guaranteed to function
correctly.

Figure 10: Error injection in molecule function output

Figure 11: Error injected into connecting bus

5 OTHER CONSIDERATIONS

5.1 LEARNING
In the example simulated the detector set was generated
by hand. However, the ability to learn is paramount to
the adaptive immune system. During the maturation of
B and T cells in a biological immune system, they are
exposed to self proteins; those that bind to these are

Trans B

Trans

 B

destroyed. This can be achieved in this application by
first setting all the states as error conditions (i.e. filling
the LUTs with 1s). A learning period, with fault free
operation, is used to present self states to the immune
system; each state that occurs is self and this state is
removed from the LUT. This type of process is
common in many artificial immune systems to generate
a detector set. Within a hardware situation there are
some difficulties. As stated, the process has to be error
free (which is sometimes difficult to guarantee) and all
self states have to be demonstrated. This becomes a
non-trivial process in a complex system. Adaptive
systems (such as those that will populate the final
POEtic device) also pose problems.

In biological systems it is not guaranteed that all cells
are exposed to all self proteins. Processes exist that
allow self binding cells to be accommodated. B cells
require co-stimulation by helper T cells (too complex
for a hardware system). The state of the immune system
also changes the response of a binding cell. If a killer T
cell binds to a protein without any other stimulation, it
is quite possible that the cell is binding with self and no
action is taken. However, if there are other indicators
that pathogens are present then the binding cell may
well replicate and kill the infected cells. Cell damage
(presented to the immune system by antigen presenting
cells) is one such indicator of the presence of
pathogens. In essence, more that one trigger is required
before potentially damaging action is instigated.

This could be emulated by using the knowledge gained
from the comprehensive testing process that follows the
artificial immune system’s detection of non-self. If no
errors are found then that detector is probably
identifying self and should be destroyed. However, care
should be taken to consider a temporary fault. Again
taking inspiration from biology, detectors should be
periodically created, or more than a single instance of
detection is required before action is taken.

Much further work is required to investigate the full
potential of this process.

5.2 SCALABILITY
The innate section of the system is not limited by scale.
The same tests are typically performed whatever the
size of the device; simply more tests are performed in
parallel.

The limit of the scalability of the implementation of the
negative selection algorithm is the size of the detector
set required. This is dependent upon the number of bits
that describe each state and the number of error states
present. The actual system size is not relevant. If a robot
controller is once more considered as an example, then
it would be probable that the outputs of any detectors
and values of motor controls would contain more bits.
However, it would be quite possible to reduce these,
with appropriate logic, to produce simple signals that
determin features such as if an object was near or that a
motor was being driven forward. Much of the extra data
are not necessary for the immune system and can be

compared to the feature extraction process performed
by the major histocompatibility complex in biological
immune systems. However, more complex systems with
much larger numbers of bits per state can still be easily
accommodated. It would no longer be appropriate to
have a complete coverage of all states which would
complicate the learning algorithm since some decision
upon which detectors to include would be required. This
is harder to implement in hardware; however, it would
not be uncommon for this to be performed in software,
offline.

6 CONCLUSIONS
A demonstration of a multilayer artificial immune
system implemented within an embryonic array for
hardware fault tolerance has been simulated. Using a
negative selection algorithm to monitor the system’s
state for situations that should not occur reduces the
number and size of the detector set hence reduces the
size of the immune system. A non-learning layer could
then be used to localise the fault.
The use of an embryonic array provides an ideal process
to avoid the faults located. The immune system adds
considerably to the fault tolerance of current
implementations of embryonic arrays.

The process currently uses a detector set that is selected
by hand; however, learning algorithms have been
identified that could be applied. The system also shows
promise for scaling to larger systems than that
demonstrated.

Acknowledgements
The authors would like to thank other members of the
POEtic team for their help and ideas. This project is
funded by the Future and Emerging Technologies
programme (IST-FET) for the European Community,
under grant IST-2000-28027 (POETIC). The
information provided is the sole responsibility of the
authors and does not reflect the Community's opinion.
The Community is not responsible for any use that
might be made of data appearing in this publication.

References
M. Abramovic, J. Emmert and C. Stroud. Roving
STARS: An Integrated Approach to On-Line Testing
Diagnosis and Fault Tolerance for FPGAs in Adaptive
Compuitng Systems. The 3rd NASA/DoD workshop on
Evolvable Hardware. Pages 73-92. 2001.

R.D. Blanton, S.C. Goldstein and H. Schmit. Tunable
Fault Tolerance via Test and Reconfiguration.
International Fault-Tolerant Computing Symposium.
1998.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and
J. Watson. Molecular Biology of the Cell. 3rd Edition.
Garland Publishing, New York. 1994.
D.W. Bradley and A.M. Tyrrell. Immunotronics:
Hardware Fault Tolerance Inspired by the Immune

System. Proceedings of the 3rd International
Conference on Evolvable Systems. Lecture Notes in
Computer Science, Springer-Verlag. 1801:11-20.
2000a.

D.W. Bradley, A.M. Tyrrell. Hardware Fault Tolerance:
An Immunological Solution. Proceedings of IEEE
Conference on Systems, Man and Cybernetics. 1: 107-
112. 2000b.

D.W. Bradley, A.M. Tyrrell. Multi-layered Defence
Mechanisms: Architecture, Implementation and
Demonstration of a Hardware Immune System. 4th
International Conference on Evolvable System. Lecture
Notes in Computer Science. 2210:140–150. 2001.

D.W. Bradley, A.M. Tyrrell. A Hardware Immune
System for Benchmark State Machine Error Detection.
Congress on Evolutionary Computation, 2002.

L.N. de Castro. Artificial Immune Systems: Part1 –
Basic Theory and Applications. Technical Report TR-
DCA 01/99. State University of Campinas. 1999.

L.N. de Castro and F. J. von Zuben. Artificial Immune
Systems: Part2 – A Survey of Applications. Technical
Report DCA-RT 02/00. State University of Campinas.
2000.

D. Dasgupta and N. Attoh-Okine. Immunity-Based
Systems: A Survey. Proceeding IEEE International
Conference on Systems, Man and Cybernetics. 1:369-
74. 1997.

D. Dasgupta, Y. Cao and C. Yang. An Immunogenetic
Approach to Spectra Recognition. Proceedings of
GECCO’99. Pages 149-155. 1999.

P. D'haeseleer. Further Efficient Algorithms for
Generating Antibody Strings. Technical Report of the
University of New Mexico. No. CS95-3,11/1/95. 1995.
J. Emmert, C. Stroud, J.Cheatham, A.M. Taylor, P.
Kataria and M. Abramovici. Performance Penalty for
Fault Tolerance in Roving STARs. Field-Programming
Logic and Applications. Pages 545-554. 2000.

S. Endo, N. Toma and K. Yamada. Immune Algorithm
for n-TSP. Proceedings of the IEEE Systems Man and
Cybernetics’98. Pages 3844-3849. 1998.

S. Forrest, A.S. Perelson, L. Allen and R. Cherukuri,
Self-nonself discrimination in a computer. In
Proceedings of the 1994 IEEE Symposium on Research
in Security and Privacy, Los Alamos, CA: IEEE
Computer Society Press. Pages 202-12.1994.

S. Forrest, S.A. Hofmeyr and A. Somayaji. Computer
Immunology. Communications of the ACM. 40(10); 88-
96. 1997.

C.A. Janeway, P. Travers and M. WalPort. Immuno
Biology. The Immune System in Health and Disease. 4th
Ed. Current Biology Publications. London, New York.
1999.

G. W. Hoffmann. A Neural Network Model Based on
the Analogy with the Immune System. Journal of
Theoretical Biology. 122:33-67. 1986.

P. Hajela, and J. S. Yoo . Immune Network Modelling
in Design Optimization. In New Ideas in Optimization,
Editors, D. Corne, M. Dorigo and F. Glover. McGraw
Hill, London. Pages 203-215. 1999.

S.A. Hofmeyr and S. Forrest, Architecture for an
Artificial Immune System. Evolutionary Computation.
7(1):45-68. 2000.
J. E. Hunt, and D. E. Cooke. Learning Using an
Artificial Immune System. Journal of Network and
Computer Applications. 19:189-212. 1996.

A. Ishiguro and Y. Watanabe and T. Kondo. A Robot
with a Decentralized Consensus-Making Mechanism
Based on the Immune System. Proceedings of Third
International Symposium on Autonomous Decentralized
Systems. Pages 231-237. 1997.
Y. Ishida. An Immune Network Model and its
Applications to Process Diagnosis. System and
Computer in Japan. 24(6); 38-45. 1993.

A. Ishiguru, Y. Wananabe and Y. Uchikawa. Fault
Diagnosis of Plant Systems Using Immune Networks.
Proceedings of the 1994 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent
Systems (MIT’ 94). Pages 34 – 42. 1994.

J. Kim and P. Bentley. Negative selection and niching
by an artificial immune system for network intrusion
detection. Late Breaking Papers at the 1999 Genetic
and Evolutionary Computation Conference. Pages 149-
158. 1999.

J.W. Kimball. Biology. Web URL:
http://www.ultranet.com/~jkimball/BiologyPages/W/W
elcome.html. 2002.

N.I. Nikolaev, H. Iba and V. Slavov. Inductive Genetic
Programming with Immune Network Dynamics.
Advances in Genetic Programming 3, MIT Press. Pages
355-376. 1999.

C.Ortega and A.M.Tyrrell A Hardware Implementation
of an Embryonic Architecture using Virtex FPGAs. In
proceedings of the 3rd International Conference on
Evolvable Systems. Lecture Notes in Computer Science.
1801:155-164. 2000.

L. Prodan, G. Tempesti, D. Mange and A. Stauffer.
Embryonics: Artificial Cells Driven by Artificial DNA.
4th International Conference ICES, Lecture Notes in
Computer Science. 2210:100-110. 2001.

POEtic Project Web Site: http://POEticTissue.org.
2002.

G. Tempesti. A Self-Repairing Multiplexer-Based
FPGA Inspired by Biological Processes. PhD Thesis.
École Polytechnique Fédérale de Lausanne. 1998.
V. Slavov and N.I. Nikolaev. Immune Network
Dynamics for Inductive Problem Solving. Proc of the
5th Conference on Parallel Problem solving from
Nature. Pages 712-721. 1998.

A . Stauffer, D. Mange, G. Tempesti, and C. Teuscher.
BioWatch: A Giant Electronic Bio-Inspired Watch. The

3rd NASA/DoD Workshop on Evolvable Hardware.
Pages 185-192. 2001.

P. Sundararajan and S. McMillan and S. Guccione.
Testing FPGA Devices Using JBits. 2001 MAPLD.
2001.

S. Xanthakis, S. Kararpoulios, R. Pajot and A. Rozz.
Immune System and Fault Tolerant Computing.
Artificial Evolution - Lecture Notes in Computer
Science. 1829:181-197. 1996.
Xilinx. An Overview of Multiple CAM Designs in Virtex
Family Devices. Application Note 201. URL:
http://www.xilinx.com/xapp/xapp201.pdf. 1999.

Extending the Computer Defense Immune System: Network Intrusion
Detection with a Multiobjective Evolutionary Programming Approach

Kevin P. Anchor∗, Jesse B. Zydallis, Gregg H. Gunsch, Gary B. Lamont
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
2950 P Street, Bldg 640, Dayton, OH 45433-7765

{first.last}@afit.edu

Abstract

Attacks against computer networks are becom-
ing more sophisticated, with adversaries using
new attacks or modifying existing attacks. The
research uses two types of multiobjective ap-
proaches, lexicographic and Pareto-based, in an
evolutionary programming algorithm to develop
a new method for detecting such attacks. This
development extends the Computer Defense Im-
mune System, an artificial immune system for
virus and computer intrusion detection. The ap-
proach “vaccinates” the system by evolving anti-
bodies as finite state transducers to detect attacks;
this technique may allow the system to detect at-
tacks with features similar to known attacks. Ini-
tial testing indicates that the algorithm performs
satisfactorily in generating finite state transduc-
ers capable of detecting attacks.

1 Introduction

Attacks, or intrusions, against computer systems and net-
works have become commonplace events. Many intru-
sion detection systems and other tools are available to help
counter the threat of these attacks; however, none of these
tools is perfect, and attackers are continually trying to
evade detection. This paper presents research into detecting
new attacks using a new type of antibody for the Computer
Defense Immune System (CDIS). These antibodies, which
are implemented as finite state transducers, are created us-
ing multiple objectives in an evolutionary programming al-
gorithm.

∗The views expressed in this article are those of the authors
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the U.S. Govern-
ment.

The paper is organized as follows. Section 2 briefly dis-
cusses intrusion detection systems, evolutionary program-
ming (EP), and multiobjective evolutionary algorithms
(MOEA). Section 3 discusses other CIS-based work in the
intrusion detection area. The problem addressed in this pa-
per is defined and discussed in Section 4, and Section 5
discusses the algorithms chosen to solve the problem. The
associated tests, results, and analysis are described in Sec-
tion 6, followed by the conclusions.

2 Background

2.1 Intrusion Detection Systems

An intrusion detection system (IDS) helps detect and iden-
tify attacks on a computer system or network. The IDS de-
tects attacks by collecting and analyzing information; this
information may consist of network traffic, data from a par-
ticular host, or both. This research focuses only on the net-
work traffic, so it is a network-based IDS.

An IDS can also be categorized based on its approach for
detecting an attack. The main categories are signature-
based, anomaly-based, and compound or hybrid [1]. A
signature-based system uses knowledge about an attack,
such as the pattern or signature of the attack, to determine
whether an attack is occurring. If the system does not rec-
ognize an attack pattern, then it assumes the data is accept-
able [1]. A main disadvantage to this type of system is that
an attack that is not in the knowledge base is not detected.
The second technique is known as anomaly-based intrusion
detection. This technique uses a model of known good be-
havior and then detects deviations from this model. Any
behavior that does not match the model is assumed to be
an intrusion [1]. Thus, the system can detect new attacks
because it does not rely on a knowledge base of known at-
tack patterns; instead, it relies on a “knowledge base” of
known good behaviors. For this type of system, the model
of known good behavior must be accurate or the system
generates many false detection warnings. The research sys-

tem discussed in this paper is a compound or hybrid of the
two forms, as it uses knowledge about an attack and infor-
mation based on a partial model of known good network
traffic, or “self,” to evolve finite state transducers (FSTs)
as antibodies that can detect the attack and other similar or
related attacks.

Several immune system-based IDSs are discussed in Sec-
tion 3.

2.2 Evolutionary Programming

At a high-level, the standard EAs are all very similar in
that they use a model of the biological process of evolu-
tion as a framework for the algorithm. However, each class
of algorithm has its own representation, reproductive oper-
ators, and selection procedure. These differences explain
why some EAs are better suited to certain problems; the
differences also show that the evolutionary process can be
modeled at many levels and in many ways.

One type of EA is Evolutionary Programming (EP), which
is similar in concept to other EAs but differs in the genera-
tion of offspring from the parent population members. Typ-
ical EP algorithms utilize a mutation operator and generate
one offspring for each parent population member without
the use of recombination. A standard EP algorithm be-
gins by initializing a population of individuals randomly.
This process is meant to generate a wide spread of solu-
tions within the search space. Once the starting population
is generated, all of the members are evaluated based on the
defined fitness function. The fitness value assigned to each
of the population members is necessary for the selection
operators that are utilized in a later step. A mutation opera-
tor is applied to each of the population members to “move”
them throughout the search space. This is the “searching”
process that the EP conducts to find the “best” solution.
This offspring population of solutions are evaluated and a
selection operator is applied over the combined population
to determine which members are fit to become the parent
population for the next generation. The algorithm termi-
nates after some specified stopping criteria [2].

The research algorithm discussed in Section 5 uses evolu-
tionary programming to generate a new type of antibody
for the CDIS.

2.3 Multiobjective Evolutionary Algorithms

A relatively new and increased focus of much research is
in Multiobjective Evolutionary Algorithms (MOEA) [3, 4].
This area of the EA field is currently of interest to many
researchers due to its applicability to real-world problems.
In order to understand the concepts applied in the multi-
objective version of our algorithm, some terminology must
be defined. The process of finding the global maximum

or minimum of a set of functions is referred to as Global
Optimization. In general, this formulation must reflect the
nature of multiobjective problems (MOP) where there may
not be one unique solution but a set of solutions found
through the analysis of associated Pareto Optimality The-
ory. MOPs typically consist of competing objective func-
tions, which may be independent or dependent on each
other. Many times MOPs force the decision maker to make
a choice, which is essentially a tradeoff, of one solution
over another in objective space. MOPs are those prob-
lems where the goal is to optimizen objective functions
simultaneously. This may involve the maximization of all
n functions, the minimization of alln functions or a combi-
nation of maximization and minimization of thesen func-
tions. The formal definition of an MOP is found in [5].

The solution to an MOP is the set of solutions on the Pareto
Front, which represent optimal solutions in the sense that
improving the value in one dimension of the objective func-
tion vector leads to a degradation in at least one other
dimension of the objective function vector. This forces
the decision maker to make a tradeoff decision when pre-
sented with a number of optimal solutions for the MOP at
hand, i.e. the Pareto Front. The decision maker typically
chooses only one of the associated Pareto Optimal solu-
tions,~u ∈ PF∗, as being the acceptable compromise so-
lution, even though all of the Pareto Optimal solutions are
optimal [5].

MOPs typically consist of competing objective functions,
which may be independent or dependent on each other. An
example of this is a company’s quest to purchase a back-
bone for its computer network that provides the greatest
throughput at the least monetary cost. These objectives are
highly dependent on each other as increased cost brings in-
creased throughput and vice-versa. The termobjectiveis
used to refer to the goal of the MOP to be achieved andob-
jective spaceis used to refer to the coordinate space within
which vectors resulting from the MOP evaluation are plot-
ted [5].

There are three main evolutionary approaches taken to
solve MOPs; aggregation approaches, population based
non-Pareto approaches, and Pareto-based approaches [6].
In this paper, we use the latter two approaches. The non-
Pareto based approach implemented in this paper is a lex-
icographic approach [6]. This approach involves the rank
ordering of objectives based on the priority associated with
each. Essentially, each of the fitness functions are applied
sequentially to a given population member.

The other multiobjective approach used here is a Pareto-
based approach that utilizes the concepts of Pareto Domi-
nance in determining the set of solutions [6]. The concept
of Pareto Optimality is integral to determining which mem-
bers dominate each other. A way to determine if one solu-

tion is “better,” or dominates another, is a necessity here as
well as in all problems. Pareto concepts allow for the deter-
mination of a set of optimal solutions in MOPs. Although
single-objective optimization problems may have a unique
optimal solution, MOPs have a possibly uncountable set
of solutions, which when evaluated produce vectors whose
components represent trade-offs in decision space. One key
Pareto concept, Pareto Dominance, is defined mathemati-
cally as [5]:

Definition 1 (Pareto Dominance for Minimization Prob-
lems): A vector~u = (u1, . . . , uk) is said to dominate an-
other vector~v = (v1, . . . , vk) (denoted by~u ¹ ~v) if and
only if u is partially less than v; i.e.,∀i ∈ {1, . . . , k}, ui ≤
vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. 2

Pareto optimal solutions are those solutions within the
search space whose corresponding objective vector com-
ponents cannot be all simultaneously improved. These so-
lutions are also termednon-inferior, admissible, orefficient
solutions, and their corresponding vectors are termednon-
dominated; selecting a vector(s) from this vector set (the
Pareto Front set) implicitly indicates acceptable Pareto op-
timal solutions (genotypes). These solutions may have no
clearly apparent relationship besides their membership in
the Pareto optimal set. It is simply the set of all solutions
whose associated vectors are nondominated; it is stressed
here that these solutions are classified as such based on
their phenotypicalexpression. Their expression (the non-
dominated vectors), when plotted in criterion (phenotype)
space, is known as thePareto Front[5, 7].

3 Related Work

The central model in CDIS is a Computational Immune
System (CIS) or Artificial Immune System (AIS), which
is modeled on the biological immune system [8, 9]. Algo-
rithms based upon a CIS are not exact models of the bi-
ological immune system; instead, they are abstractions of
the immune system ideas applicable to the problem being
solved, and they are implemented in some computer set-
ting. Only concepts required for the particular application
are mapped into the CIS, and natural continuous processes
must necessarily be digitized to work on a digital computer
[10].

CDIS, which is based on the negative-selection model, uses
the concepts of self and non-self. The definitions of self
and non-self are important to the proper functioning of the
CIS, but each particular application has its own method for
defining these concepts [10]. Ideally, the training set rep-
resenting self is designed to represent as nearly as possible
the “normal” activity that takes place at the location pro-
tected by the CIS.

Previous work exists in developing artificial and compu-
tational immune systems, and several research thrusts are
underway in the area of computer defense [11, 12, 13, 14].
These techniques have shown considerable promise in in-
trusion detection. Our work, however, was inspired mainly
by the work of the research groups of Dasgupta [15, 16,
17], Forrest [18, 19, 20, 21], and Lamont [22, 23, 10, 24,
25].

Dasgupta and Gonzalez performed network intrusion de-
tection and developed a GA-based, Classifier-based deci-
sion support tool for assisting in the response to an intru-
sion [16, 17].

Forrest, Hofmeyr, and others have done extensive work
with designing and using CISs for computer security ap-
plications. They have built CISs for host-based ID and
network-based ID. Their host-based IDS defines self as se-
quences of system calls made by privileged programs, so it
detects abnormal, or non-self, system calls [20, 26]. Their
network-based IDS, called LISYS, uses three features for
defining self: the source IP address, the destination IP ad-
dress, and the TCP port. Only TCP SYN packets, which
signal the start of a connection, are monitored by this IDS.
Connections that occur frequently are considered part of
self [19]. Our research differs from this work in several
ways. For instance, CDIS uses 28 features, which include
the three used by LISYS. Also, CDIS examines all TCP,
UDP, and ICMP packets, rather than just monitoring the
TCP SYN packets.

Lamont and others developed a hierarchical, distributed
system called the Computer Virus Immune System (CVIS),
which is a CIS that detects viruses. It was designed to man-
age sets of antibodies as they move through their lifecycles,
to include sharing good antibodies throughout the system,
handling issues like costimulation, alarms, and reporting,
and producing any applicable reactions to old, new, or un-
known attacks [22]. The capability of detecting network-
based intrusions was added [24, 27] and the system was
renamed to CDIS.

4 Problem Description

This section discusses the intrusion detection problem. The
research goal and details of the problem domain are ex-
plained.

4.1 Intrusion Detection Problem Statement

The goal of our research is to develop an innovative type
of antibody for the Computer Defense Immune System
(CDIS); specifically, the new method is intended to de-
tect attacks that are modified versions of existing attacks or
stealthy version of existing attacks. Stealthy attacks may

take place over a long period of time, cover a large number
of targets, or originate from a number of different, coor-
dinated sources. Because these attacks are designed to be
stealthy, they are hard to detect using current intrusion de-
tection systems [24]. Current IDSs can be tuned to detect
some stealthy attacks, but the resulting false alarm, or false
detection, rate usually increases to an unacceptable level.
Thus, new methods for detecting these types of attacks are
needed.

New attacks may be modifications of existing attacks [24],
so an approach for an ID system is to use knowledge of ex-
isting attacks to develop generalized detectors. These gen-
eralized detectors might have the ability to detect unknown
attacks that are based on existing attacks or that are similar
to existing attacks. Developing such generalized detectors
is one aspect of the Intrusion Detection (ID) problem. This
approach maps to the Time Series Prediction problem [28],
in which a sequence of symbols is input and the correct
output symbol must be predicted based on the input sym-
bols. In this mapping, the input symbols are a sequence of
network packets, and the output symbols represent whether
the sequence is assumed to be an attack or not.

4.2 Approach

A network Internet Protocol (IP) packet is made up of
a number of fields, including routing information, packet
function, status flags, and content. Table 1 summarizes
some of the main IP and Transmission Control Protocol
(TCP) fields1 that were found to be useful in earlier ID
work [25]. Although the packet content or payload is an
important part of each packet, it is not used in this research
for two reasons. The main reason is that the size of the
search space increases immensely if this field is used; the
second reason is that existing signature-based detectors can
be used to examine the content field in an efficient manner.

Network traffic consists of a sequence of packets, and an
attack is also a sequence of packets. The packet features
and relationships between features of multiple packets can
be used to determine if a particular sequence of packets is
an attack or not. Thus, the ID problem for this research
focuses on the features shown in Table 1 along with the
packet relationships shown in Table 2 to decide whether a
particular sequence of packets is an attack or not.

The previous discussion motivates a new method for build-
ing antibodies for the CDIS. We call this new process “vac-
cination,” since it is inspired at a high level by vaccina-
tion in a human. “Vaccination” injects existing knowl-
edge about an attack into the CDIS to develop antibod-

1Only TCP packets are examined in this effort; however, other
IP sub-protocols could be examined in a similar manner since the
nature of the algorithm does not specifically exclude any protocol.

ies which detect that attack plus generalized versions of it.
Knowledge about the attack, specifically the relationships
between packets in the attack, is used to develop an attack
signature. Using packet relationships generalizes the sig-
nature because exact details such as the Source IP address
become relationships. This generalized pattern is then “in-
jected” into the EP process to create antibodies, each of
which is a finite state transducer2 (FST) that detects the
generalized pattern.

Developing antibodies using “vaccination” provides the
ability to define patterns of known attacks and variations
or modifications of known attacks. This method might also
detect new attacks that have similar packet relationships as
do existing attacks. In addition, this method allows for dis-
tinguishing between attack sequences and non-attack se-
quences because the FST can be built to accept an attack
sequence while rejecting a non-attack sequence.

The genotype, or internal representation, of a detector in
this scheme is an FST, which represents some regular lan-
guage or pattern. The phenotype, or outward expression, of
the detector is a “Detect” or “Not Detect” signal, which cor-
responds to the FST rejecting or accepting the word, which
represents the network packets that may constitute an at-
tack. The fitness value of a particular FST is dependent
on two factors: whether it detects an attack correctly and
whether it does not detect a non-attack string as an attack.
Because there are multiple factors involved, a multiobjec-
tive approach to solving this problem seems a natural fit;
the particular multiobjective approaches used are discussed
in the next section. These FST-based detectors are used as
antibodies in the CDIS architecture.

Table 1: Packet Features [25]

Field Name Possible Values
IP Fields (All packets)
IP Ident. Number 0-65535
IP Time to live (TTL) 0-255
IP Flags 0-65535
IP Overall Packet Length 0-65535
IP Source Address Valid IP address
IP Dest. Address Valid IP address
TCP-Only Fields (TCP packets only)
TCP Source Port 0-65535
TCP Dest. Port 0-65535
TCP Seq. Num 0-4294967295
TCP Ack Num 0-4294967295
Individual TCP Flags
(PCWR, Echo, Urgent, Ack,
Push, Reset, Syn, Fin)

Boolean

2The term “finite state transducer” as used here is the same as
a Mealy-type finite state machine.

Table 2: Packet Relationships

IP Relationships (for
all Packets)

TCP-Only Relationships

Same-IP-Class-A-Src Same-TCP-Port-Src
Same-IP-Class-B-Src Same-TCP-Port-Dest
Same-IP-Class-C-Src Same-TCP-Flags
Same-IP-Class-D-Src Same-TCP-Seq-Num
Same-IP-Class-A-Dest Same-TCP-Next-Seq-Num
Same-IP-Class-B-Dest Same-TCP-Ack-Number
Same-IP-Class-C-Dest Same-TCP-Size
Same-IP-Class-D-Dest
Same-IP-Flags
Same-Packet-Len
Same-IP-ID-Num
Same-IP-TTL

Figure 1 shows a pedagogical example FST as generated by
this approach. The symbols inside the brackets on the tran-
sitions are the input symbols that cause a transition; these
symbols represent which of the relationships from Table 2
are present between two sequential packets. The symbol
after the colon represents the output symbol: “Detect” or
“Not Detect.”

0

[A,B,C,D,G,H,I,J]:N

1[E]:N

2

[F]:N

[A,G,I]:N

[C,H,J]:D
[B,E]:N
[F]:D

3
[D]:D

[A,J]:D

[F,H,I]:D

[C,G]:N
[B,D]:N

[E]:D

[B,F]:N

[D,E,H]:D

[A,I,J]:N
[C,G]:D

Figure 1: Example FST

5 Algorithm

Standard EP approaches have been modified to use repre-
sentations such as finite state machines (FSMs) and FSTs,
so appropriate reproductive operators have already been
defined. EP has been repeatedly used to solve problems
somewhat similar to the ID problem using only one objec-
tive. L. Fogel used EP to evolve FSMs that were capable
of predicting a number in a series [29], while D. Fogel later
modernized this work and added additional features [30].
Spears used EP to evolve FSMs that were capable of play-
ing a game in which they defended network resources from
an opponent [31]; this work implies that EP can be applied
to network resource problems.

Given an input attack string, each FST produces some out-
put string. A “detect” signal is generated when an FST
outputs the sequence (N,N,...,N,D), where the length of the
sequence is the same as the input string length. Thus, any
output string that is not in the form of the “detect” signal is
considered a non-attack.

Detectors are evolved through the EP process by select-
ing and reproducing the FSTs that best match the input
attack string to the detect sequence. In addition, the al-
gorithm uses some number of self-strings, or known non-
attack strings, which the FSTs must not detect as attacks.
The fitness functions discussed in subsection 5.1.2 are the
embodiment of this process.

The original EP algorithm for this problem used only the
single objective of detecting a given attack string, while the
second version added the ability to use a single self-string
along with the attack string in a lexicographic multiob-
jective fashion [32]. The current implementation provides
the ability to use an arbitrary number of self-strings along
with the attack string in either a lexicographic or Pareto-
based multiobjective optimization. The selection mecha-
nisms used for the current version are described in subsec-
tion 5.1.3.

The algorithm pseudocode is shown in Figure 2.

initialize populationP of sizen

evaluateall population membersp ∈ P
with respect to all fitness functions

while Current Generation< Max Generationsdo
mutate:For eachp ∈ P ,

Conduct Mutation Step 1 with probability 1.0
Conduct Mutation Step 2 with probabilityPMut2

Conduct Mutation Step 3 with probabilityPMut3

evaluate:all population membersc ∈ Child PopulationC
with respect to all fitness functions

select:Next parent populationP using the appropriate
Tournament Selection routine
(Lexicographic or Pareto-based)

od

Figure 2: Pseudocode for Algorithm

5.1 Evolutionary Operators for the Algorithm

Since the algorithm for the current project was inspired by
Fogel’s work [30], it is similar to that EP algorithm, with
differences such as the selection mechanism and the addi-
tion of the ability to use multiple objectives. The particular
evolutionary operators used are discussed in the following
subsections.

5.1.1 Reproduction

Mutation is the only reproductive operator used in this al-
gorithm. It can take one of the following five forms: change
the output symbol, change a state transition, add a state,
delete a state, or change the start state [30]. Some inter-
nal bookkeeping is required so that a state is not deleted
from an FST with only one state or a state is not added to
an FST that already has the maximum number of allowed
states [30].

One of these five mutations is performed on each popula-
tion element during every generation; the specific mutation
is chosen uniformly. A second or third mutation for each
population element is also allowed; the user sets the proba-
bility of occurrence for each of these other mutations.

Recombination is not used in the algorithm, since mutation
is historically the primary reproductive operator used for
EP. However, future versions might incorporate recombina-
tion of some sort to further explore the search space. Since
the search landscape has not been characterized for this
problem, experimentation is required to determine what re-
production operators work well.

5.1.2 Fitness Functions

The first fitness function measures the percentage of FST
output symbols that match the sequence (N,N,...,N,D),
given the input attack string. This is the only fitness func-
tion used in the single-objective version of the algorithm.
This fitness function is similar to that of the Boolean satis-
fiability problem [33]. The input string causes a sequence
of output symbols to be generated by each FST; these sym-
bols are then compared to the expected or desired output
string of (N,N,...,N,D) to give a fitness value of absolute
error in the generated output versus the expected output.

The other fitness functions, used in the multiobjective ver-
sions of the algorithm, measure the percentage of FST out-
put symbols that do not match the sequence (N,N,...,N,D),
given the particular “self” or non-attack string. Note that
the higher the fitness, the fewer symbols match the “de-
tect” sequence, but any fitness value above zero indicates
the FST did not detect the “self” input string as an attack.

5.1.3 Selection

Standard tournament selection with replacement is em-
ployed in all versions of the algorithm. Any number of
competitors is allowed in the tournament, so the selection
pressure can be adjusted as desired.

In the single-objective version of the algorithm, only the
first fitness function is calculated and used for the tourna-
ment process. Similarly, the lexicographic multiobjective
version of the algorithm only uses the first fitness value for

the tournament selection procedure. However, when a FST
has a fitness of 1.0, which means it detects the attack cor-
rectly, the other fitness values are calculated to determine
if the FST detects any of the “self” strings as an attack. If
any of the strings are detected as an attack, then the FST re-
ceives a user-specified penalty on its first fitness score and
then continues into the evolutionary programming process
with the penalty. On the other hand, the Pareto-based mul-
tiobjective version of the algorithm uses all fitness values
for every tournament.

6 Experimental Approach

The testing performed on the algorithm is designed to de-
termine whether the two multiobjective EP algorithms are
capable of finding solutions, or good detectors, over a range
of input attack strings. In this case, a good detector is one
which detects the input string developed from a sequence
of attack packets and generates a “Detect” signal. Thus,
the outputs of the algorithms are the time required to find
a good solution and the number of generations needed to
find that solution. The goal of the testing is to examine the
efficiency of the algorithm rather than the solution effec-
tiveness. Examining solution effectiveness is work that is
currently on-going.

The algorithms are tested using two different test sets. The
first test set consists of five representative input strings,
or benchmark attack packets. These representative strings
are generated randomly, using any of the possible relation-
ships from Table 2. Multiple input string lengths, including
strings much larger than those expected in the ID domain,
are used in these tests. The second set of tests uses a real-
world scan generated by the Queso tool. Each test run also
uses five self strings that are generated by randomly chang-
ing two positions of the input attack string. The number
of positions to change was chosen to keep the self strings
“close” to the original attack string in terms of a distance
metric. Thus, each test uses one attack string and five self
strings, for a total of six fitness functions to be maximized.

6.1 Test Setup and Parameters

This testing is performed on a dedicated Dell Latitude Pen-
tium III 1 GHz computer with 512 MB RAM and the Win-
dows 2000 Professional Edition operating system. The al-
gorithm is implemented in Java 1.3.101 and is compiled to
a native Windows executable using the JOVE 2.0 compiler.
The random number generator is Sean Luke’s Java imple-
mentation of the Mersenne Twister algorithm, which has a
longer period and is faster than the standard Java random
number generator [34].

All of the test runs use the same parameters, other than the
population size and number of generations allowed. These

tests allow a maximum of 15 states for any FSM, and the
probability of a second mutation step is 1.0 and a probabil-
ity of a third mutation step of 0.5. These parameters were
chosen based on previous internal testing to show the fea-
sibility of using the multiobjective approaches. For the first
and second test sets, each experiment was repeated with
population sizes of 100, 250, and 500. For the third test
set, which uses a real attack, all of the tests used a popu-
lation size of 100. All of the tests used ten replications for
each test run, where each replication is allowed to execute
until a solution is found.

6.2 Test Results and Analysis

Table 3 summarizes the average time and number of gen-
erations needed to find a solution FST for the first set of
tests; the name of each test shows the type of algorithm
used. The tests labeled with a “LX” use the lexicographic
multiobjective approach, while the tests marked “PF” use
the the Pareto-based method. Figures 3 through 7 show
boxplots which present a graphical view of the primary test
results for the number of generations and time required to
find a solution and provide some appreciation for the dis-
tribution of the results. The boxplot provides a method for
graphically depicting the distribution of a dataset and com-
paring multiple datasets. The box contains the middle 50%
or the interquartile range (IQR) of the distribution. The un-
marked line inside the box represents the median, while the
line with square symbols represents the average. The lines
extending from the top and bottom of the box contain any
points within 1.5*IQR; any points outside of this range are
shown as outliers [35].

As can be seen in all of the figures, there is a large variance
in the time to execute and the number of generations re-
quired to generate a solution for the LX and PF tests. This
is expected as the process is based on random events, but
the variance and averages in the PF testing are significantly
larger than those noticed in the LX tests. In addition, each
of the Pareto-based tests has one outlier or large value that
skews the average. For example, Figure 6 shows that the
PF-4 test had an outlier that took 1443 generations to find a
solution, while the median value for test PF-4 was only 72
generations.

The box plots also illustrate the fact that the time and gen-
erations required for each set of tests seem to be related.
This observation is expected, since the time to execute one
generation is fairly constant during the course of a test run.

Additionally, we note that the LX tests always converge
to a solution in less time than the PF tests. At an initial
glance this would lead us to state a preference for using
the LX approach, but there is a need to further analyze the
overall quality of the solutions found to determine which

method performs statistically better or if they are equiva-
lent in terms of solution quality. Solution quality, in this
case, refers to the false alarm rate, which measures how
often the solution incorrectly detects some benchmark set
of non-attacks as attacks. The false alarm rate plays a key
factor in determining the usefulness of an intrusion detec-
tion system, so it is important to test. Our conjecture is that
the quicker execution time of the LX tests leads to a larger
false alarm rate, or lower solution quality; solution quality
and this conjecture will be tested in future work.

Table 3: Summary of Test Results

Test
Name

Avg
Time (s)

Time Std
Dev

Avg Gen Gen Std
Dev

LX-1 22.49 12.50 41.10 53.73
PF-1 204.58 362.38 819.00 1537.29

LX-2 33.44 29.88 86.70 129.08
PF-2 187.91 293.72 740.20 1246.76

LX-3 29.37 19.27 71.30 83.09
PF-3 207.17 227.73 832.80 972.08

LX-4 32.51 27.08 81.50 119.47
PF-4 71.30 102.50 246.80 435.51

LX-5 32.68 17.35 80.00 74.71
PF-5 68.04 69.34 224.50 288.54

13.7

56.4

20.4
22.5

18.5

1193.5

64.4

204.6

3.0

187.0

32.0

41.1

24.0

5005.0

222.5

819.0

Time (s) - LX-1 Time (s) - PF-1 Gens - LX-1 Gens - PF-1

0

1000

2000

3000

4000

5000

6000

Figure 3: Comparison of Lex and Pareto-based for Test 1

The results of the second test set, which use the real-world
Queso scan, are shown in Table 4. Figures 8 and 9 are
boxplots which compare the generations and time required
for the tests. The results for these tests follow the pattern
of the first test set, in that the Lexicographic tests ran for
fewer generations and less time, in general, before finding
a solution. For example, the data in the table shows that
the lexicographic test runs ran an order of magnitude faster
with an order of magnitude less variance than the Pareto-
based tests.

96.5

13.5

33.4
17.8

866.156

19.016

187.9

45.8

361.0

1.0

86.7

19.5

3605.0

1.000

740.2

138.5

Gens - PF-2Gens - LX-2Time (s) - PF-2Time (s) - LX-2

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 4: Comparison of Lex and Pareto-based for Test 2

67.0

13.1

29.4
19.1

605.5

13.1

207.1

127.7

231.0

1.0

71.3

27.0

2528.0

1.0

832.8

497.0

Gens - PF-3Gens - LX-3Time (s) - PF-3Time (s) - LX-3

0

500

1000

1500

2000

2500

3000

Figure 5: Comparison of Lex and Pareto-based for Test 3

99.4

15.24

32.5
21.5

352.2

17.1

71.3

29.7

376.0

10.0

81.5
22.0

1443.000

18.000

246.8

72.0

Gens - PF-4Gens - LX-4Time (s) - PF-4Time (s) - LX-4

0

200

400

600

800

1000

1200

1400

1600

Figure 6: Comparison of Lex and Pareto-based for Test 4

Table 4: Summary of Test Results for Test Set 2 (Queso)

Test
Type

Avg
Time (s)

Time
Std
Dev

Avg
Gen

Gen
Std
Dev

LX 296.1 224.1 338.4 285.6
PF 5441.3 6962.7 6750.0 8692.7

7 Conclusions

This research presents another step in detecting computer
network intrusions through the use of a new type on anti-

61.0

14.3

32.7

27.9

221.9

14.3

68.0

37.7

202.0

1.0

80.0

59.5

881.0

1.0

224.5

101.0

Gens - PF-5Gens - LX-5Time (s) - PF-5Time (s) - LX-5

0

100

200

300

400

500

600

700

800

900

1000

Figure 7: Comparison of Lex and Pareto-based for Test 5

831

5
338
311

20001

15

6750

826

Pareto Front
Generations

Lexicographic
Generations

0

5000

10000

15000

20000

25000

Figure 8: Comparison of Generations for Lexicographic
and Pareto-based Queso Scan Test

688

36
296
269

16075

46

5441

686

Pareto Front
Time (sec)

Lexicographic
Time (sec)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 9: Comparison of Time for Lexicographic and
Pareto-based Queso Scan Test

body for the Computer Defense Immune System. The anti-
bodies are created through “vaccination” using knowledge
about an attack in a multiobjective evolutionary program-
ming algorithm.

The testing shows that the evolutionary programming tech-
nique generates finite state transducers, or Mealy-type fi-
nite state machines, capable of matching or detecting an

input attack string, for the limited string sizes tested. The
lexicographic approach allows the use of the attack and
“self” strings while performing significantly faster than the
Pareto-based approach; however, further testing is required
to determine the solution quality. Solution quality is deter-
mined by the false detection rate and the missed detection
rate, but determining exactly how to measure solution qual-
ity in a fair and consistent manner is an on-going research
question in the ID community. We are attempting to de-
velop an appropriate test bed with “real-world” data so that
the solution quality of the antibodies generated by the “vac-
cination” process can be tested.

Acknowledgments

This work is sponsored in part by the Air Force Office of
Scientific Research.

References

[1] S. Axelsson, “Intrusion detection systems: A sur-
vey and taxonomy,” Tech. Rep. 99-15, Department of
Computer Engineering, Chalmers University, 2000.

[2] Thomas B̈ack, D. B. Fogel, and Z. Michalewicz, Eds.,
Evolutionary Computation 1: Basic Algorithms and
Operators, Institute of Physics, Bristol (UK), 2000.

[3] David A. Van Veldhuizen and Gary B. Lamont, “Mul-
tiobjective Evolutionary Algorithms: Analyzing the
State-of-the-Art,”Evolutionary Computation, vol. 8,
no. 2, pp. 125–147, 2000.

[4] Carlos A. Coello Coello, David A. Van Veldhuizen,
and Gary B. Lamont, Evolutionary Algorithms for
Solving Multi-Objective Problems, Kluwer Academic
Publishers, 233 Spring St., New York, NY 10013,
2002.

[5] David A. Van Veldhuizen,Multiobjective Evolution-
ary Algorithms: Classifications, Analyses, and New
Innovations, Ph.D. thesis, Department of Electrical
and Computer Engineering. Graduate School of En-
gineering. Air Force Institute of Technology, Wright-
Patterson AFB, Ohio, May 1999.

[6] C. M. Fonseca and P. J. Fleming, “Multiobjective
Optimization,” in Evolutionary Computation 2 Ad-
vanced Algorithms and Operators, Thomas B̈ack,
David B. Fogel, and Zbigniew Michalewicz, Eds.,
vol. 2, pp. 25–37. Institute of Physics Publishing,
Bristol (UK), 2000.

[7] Jesse B. Zydallis, David A. Van Veldhuizen, and
Gary B. Lamont, “A Statistical Comparison of

Multiobjective Evolutionary Algorithms Including
the MOMGA–II,” in First International Confer-
ence on Evolutionary Multi-Criterion Optimization,
Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Car-
los A. Coello Coello, and David Corne, Eds., pp. 226–
240. Springer-Verlag. Lecture Notes in Computer Sci-
ence No. 1993, 2001.

[8] Dipankar Dasgupta, Ed.,Artificial Immune Systems
and Their Applications, Springer-Verlag, Berlin,
1998.

[9] D. Dasgupta, N. Majumdar, and F. Nina, “Artificial
immune systems: A bibliography,” Tech. Rep. CS-01-
002, Version 2.0, Computer Science Division, Univer-
sity of Memphis, 2001.

[10] Robert E. Marmelstein, David A. Van Veldhuizen,
Paul K. Harmer, and Gary B. Lamont, “Modeling &
Analysis of Computer Immune Systems using Evo-
lutionary Algorithms, Revision 2,” White Paper, De-
cember 1999, Air Force Institute of Technology,
Wright-Patterson AFB, OH.

[11] Jungwon Kim and Peter Bentley, “The Artificial Im-
mune Model for Network Intrusion Detection,” in
7th European Conference on Intelligent Techniques
and Soft Computing (EUFIT’99), Aachen, Germany,
1999.

[12] Jungwon Kim and Peter Bentley, “Towards an Ar-
tificial Immune System for Network Intrusion Detec-
tion: An Investigation of Clonal Selection with a Neg-
ative Selection Operator,” inCongress on Evolution-
ary Computation (CEC-2001), Seoul, Korea, 2001,
pp. 1244–1252.

[13] Jungwon Kim and Peter Bentley, “An Evalu-
ation of Negative Selection in an Artificial Im-
mune System for Network Intrusion Detection,” in
Genetic and Evolutionary Computation Conference
2001 (GECCO-2001), San Francisco, CA, 2001, pp.
1330 – 1337.

[14] Jungwon Kim and Peter Bentley, “Towards an Arti-
ficial Immune System for Network Intrusion Detec-
tion: An Investigation of Dynamic Clonal Selection,”
in Proceedings of the 2002 Congress on Evolutionary
Computation, Honolulu, 2002, pp. 1015–1020, IEEE
Press.

[15] Dipankar Dasgupta, “Immunity-Based Intrusion De-
tection Systems: A General Framework,” inProceed-
ings of the 22nd National Information Systems Secu-
rity Conference (NISSC), 1999.

[16] Dipankar Dasgupta and Fabio A. Gonzalez, “A new
approach to intrusion detection,” University of Mem-
phis, C. S. Technical Report No. CS-01-011, May
2001.

[17] Dipankar Dasgupta and Fabio A. Gonzalez, “An In-
telligent Decision Support System for Intrusion De-
tection and Response,” inLecture Notes in Computer
Science, Proceedings of the International Workshop
on Mathematical Methods, Models and Architectures
for Computer Networks Security (MMM-ACNS), St.
Petersburg, Russia, 2001, Springer-Verlag.

[18] Stephanie Forrest and Steven A. Hofmeyr, “Im-
munology as Information Processing,” inDe-
sign Principles for the Immune Systems and Other
Distributed Autonomous System, pp. 361–388. Ox-
ford University Press, 2001, Available electron-
ically at URL ftp://ftp.cs.unm.edu/pub/
forrest/iaip.ps .

[19] Steven Hofmeyr and Stephanie Forrest, “Architecture
for an Artificial Immune System,”Evolutionary Com-
putation, vol. 7(1), pp. 1289–1296, 1999.

[20] Steven Hofmeyr, Stephanie Forrest, and A. Somayaji,
“Intrusion Detection using a Sequence of System
Calls,” Journal of Computer Security, vol. 6, pp. 151–
180, 1998.

[21] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles
of a Computer Immune System,” inProceedings of
the New Security Paradigms Workshop (NSPW-97),
Langdale, United Kingdom, 1997, pp. 75–82, Asso-
ciation for Computing Machinery.

[22] Paul Harmer, “A Distributed Agent Architecture for
a Computer Virus Immune System,” M.S. thesis,
AFIT/GCE/ENG/00M-02, Graduate School of Engi-
neering and Management, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB, OH, March
2000.

[23] Paul Harmer, Paul Williams, Gregg Gunsch, and Gary
Lamont, “A Distributed Agent Based Architecture for
Computer Security Applications,”To Appear in IEEE
Transactions On Evolutionary Computation, Special
Issue on Artificial Immune Systems, 2001.

[24] Paul D. Williams, “Warthog: Towards a Com-
puter Immune System for Detecting “Low and
Slow” Information System Attacks,” M.S. thesis,
AFIT/GCS/ENG/01M-15, Graduate School of Engi-
neering and Management, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB, OH, March
2001.

[25] Paul Williams, Kevin Anchor, John Bebo, Gregg
Gunsch, and Gary Lamont, “CDIS: Towards a Com-
puter Immune System for Detecting Network In-
trusions,” in Proceedings of the 4th International
Symposium, Recent Advances in Intrusion Detection
2001, Berlin, 2001, pp. 117–133, Springer-Verlag.

[26] Justin Balthrop, Stephanie Forrest, and Matthew
Glickman, “Revisting LISYS: Parameters and Nor-
mal Behavior,” inProceedings of the 2002 Congress
on Evolutionary Computation, Piscataway, NJ, 2002,
pp. 1045–1050, IEEE Press.

[27] Kevin Anchor, Paul Williams, Gregg Gunsch, and
Gary Lamont, “The Computer Defense Immune Sys-
tem: Current and Future Research in Intrusion Detec-
tion,” in Proceedings of the 2002 Congress on Evo-
lutionary Computation, Honolulu, 2002, pp. 1027–
1032, IEEE Press.

[28] David B. Fogel, Evolutionary Computation: Princi-
ples and Practice for Signal Processing, SPIE Press,
P.O. Box 10, Bellingham WA 98227, 2000.

[29] L. J. Fogel, A. J. Owens, and M. J. Walsh,Artificial
Intelligence through Simulated Intelligence, John Wi-
ley, NY, 1966.

[30] David B. Fogel and Kumar Chellapilla, “Revisiting
Evolutionary Programming,” inSPIE Aerosense98,
Applications and Science of Computational Intelli-
gence, S.K. Rogers, D.B. Fogel, J.C. Bezdek, and
B. Bosacchi, Eds., Orlando, FL, 1998, pp. 2–11.

[31] William Spears and Diana Gordon, “Evolving Finite-
State Machine Strategies for Protecting Resources,”
in Proceedings of the International Symposium on
Methodologies for Intelligent Systems 2000. 2000,
ACM Special Interest Group on Artificial Intelli-
gence.

[32] Kevin Anchor, Gary Lamont, and Gregg Gunsch, “An
Evolutionary Programming Approach for Detecting
Novel Computer Network Attacks,” inProceedings
of the 2002 Congress on Evolutionary Computation,
Honolulu, 2002, pp. 1618–1623, IEEE Press.

[33] Z. Michalewicz and D. Fogel,How to Solve It: Mod-
ern Heuristics, Springer-Verlag, Berlin, 2000.

[34] M. Matsumoto and T. Nishimura, “Mersenne twister:
A 623-dimensionally equidistributed uniform pseu-
dorandom number generator,”ACM Transactions on
Modeling and Computer Simulation, vol. 8(1), pp. 3–
30, 1998.

[35] Stephen Vardeman and Marcus Jobe,Statistical
Qualtiy Assurance Methods for Engineers, John Wi-
ley and Sons, Inc., New York, 1999.

AISIMAM – An Artificial Immune System Based Intelligent Multi
Agent Model and its Application to a Mine Detection Problem

Srividhya Sathyanath

 Dept of Electrical Engineering,
Rochester Institute of Technology,

sxs4446@rit.edu

Ferat Sahin

Dept of Electrical Engineering, RIT
79 Lomb Memorial Drive,

 Rochester, NY 14623
feseee@rit.edu

Abstract

Artificial Immune System (AIS) is a novel
evolutionary paradigm inspired by the biological
aspects of the immune system. The human
immune system has motivated scientists and
engineers for finding powerful information
processing algorithms that has solved complex
engineering tasks. This paper discusses two
concepts. (a) The behavioral management of
artificial intelligence (AI) namely the intelligent
multi agent systems, (b) The evolutionary
computation called the artificial immune system
that imitates the biological theory called the
immune system. The outcome of this research is
an Artificial Immune System based Intelligent
Multi Agent Model named AISIMAM that
solves agent-based applications. The model is
applied to a mine detection and diffusion
problem and the results prove that AISIMAM
has solved the problem successfully.

1 Introduction
The study of biological systems is of interest to scientists
and engineers as they turn out to be a source of rich
theories. They are useful in constructing novel computer
algorithms to solve complex engineering problems.
Genetic algorithms derived from the principles of
genetics, Neural Networks derived from brain - nervous
systems or neurology (Dasgupta & Attoh-Okine, 1997)
and cellular engineering based on cell biology are some
of the biologically motivated evolutionary algorithms that
perform information processing tasks. Immunology as a
study of the immune system (Elgert, 1996) inspired the
evolution of artificial immune system, which is an area of
vast research over the last few years. Artificial immune
system imitates the natural immune system that has
sophisticated methodologies and capabilities to build
computational algorithms that solves engineering
problems efficiently. The main goal of the human
immune system is to protect the internal components of
the human body by fighting against the foreign elements
such as the fungi, virus and bacteria (Timmis et al., 1999).
It is interesting to observe that the process of recognition,
identification and post processing involve several

mechanisms such as the pattern recognition, learning,
communication, adaptation, self-organization, memory
and distributed control by which the body attains
immunity (Dasgupta, 1999).

AIS has made significant contributions to machine
intelligence. Applications of AIS are not limited to
optimization, robotics, neural network approaches, data
mining and image classification (Hajela & Yoo 1999;
Ishiguro et al., 1997; Hoffmann 1986; Hunt & Fellows
1996; Sathyanath & Sahin, 2001).

In this paper, we concentrate on Multi Agent Systems
(MAS) and their characteristics. Multi agents are
population of agents, (i.e.), more than one agent reacts to
the change in environment to accomplish the task (Huhns
& Singh, 1998). Multi agent systems are based on
behavior management of several independent agents (M.
Wooldridge, 1999).

The objective of the authors was to develop a biological
based intelligent multi agent architecture. Multi agent
systems have some features in common with the immune
system and provide scope for applying immune system
methodologies. Therefore, we have applied artificial
immune system to multi agent systems for the
computational intelligence of agents. The outcome of the
research is a generic Artificial Immune System based
Intelligent Multi Agent Model named AISIMAM. The
model draws an analogy between the immune system and
agent methodologies. It applies the immune system
principles to the agents to perform a global goal in a
distributed manner. AISIMAM is applied to mine
detection and diffusion problem, a specific application
experimented to prove the model. This paper shows that
AISIMAM solves the mine detection application
successfully.

The organization of this paper is as follows. Section 2
presents a brief introduction to the immune system.
Section 3 discusses agent definitions, characteristics of
multi agents in problem solving. Section 4 focuses on
AISIMAM with the mathematical derivations and
explantions. Section 5 explains the need for the
mathematical representation and Section 6 demonstrates
the application of AISIMAM to a mine detection and
diffusion problem. In Section 7 we state the new aspect
of this research and in Section 8 we state the scope for

future work. Section 9 summarizes the conclusion
derived out of this research work.

2 The Human Immune System
The natural immune system is a very complex system
with several mechanisms for defense against infectious
agents entering our system. The external components to
the immune system are antigens or called the non-self
cells, as they are foreign substances to the body. The
basic components of the immune system are the white
blood cells, called self-cells or lymphocytes in
immunological terms. These specialized cells are
classified into two types namely the B lymphocytes and T
lymphocytes.

• B-lymphocytes are the cells produced by the bone
marrows

• T cells develop in bone marrow and mature in
thymus

The major responsibility of the B cells is the secretion of
the receptors called the antibodies (Ab) as a response to
the antigens that enter the body (Ag) (Hajela & Yoo,
1999). The role of these receptors on the surface of the B
cell is to recognize and bind the antigen. These receptors
are called idiotopes and paratopes. Antigens also have
receptors called epitopes. The B cells generate antibodies
of complementary match that recognizes and binds the
antigen (Castro & Von Zuben, 1999). Complementary
match means the generation of an opposite shape or
structure that fits well with the antigenic epitope to
recognize the antigen. The receptors of the B cell change
their shape according to the shape of the epitope (Timmis
et al., 1999). Figure 1 shows the B cell, B cell receptors
and the epitopes of the antigen.

Figure 1: B cells, B cell receptors, antigen, and epitopes.

2.1 Properties of the Human Immune System
This section briefly discusses some of the properties of
the immune system by which the human body attains
immunity. The main function of the immune system is to
kill the antigen. It is interesting to note that this common
goal of the system is handled by the individual
components of the immune system in a distributed
fashion. At the same time they also have remarkable
properties with which they work collectively to perform

the task.

The immune system possesses the following properties.

• Positive and negative selection is a process of
discrimination of self/non-self cells that prevents
autoimmuno diseases. This process filters out the
cells that would work against the self-cells and only
the cells that would not bind the self-cells circulate to
fight against the antigens (Dasgupta, 1999).

• Clonal selection and expansion is a process of
selection of useful cells that recognize the antigen
and reproduce those cells. This process of cloning
multiplies the useful cells that are capable of
recognizing the antigens. Therefore, the B cells that
contain the specific receptor that match a particular
antigen are also multiplied. In this process, the
clones suffer hypermutation that alters the shape of
the receptor also called receptor editing, thus
increasing the affinity between the clone and the
specific antigen (Burnet, 1978; Dasgupta, 1999).

• Immune memory is a result of clonal expansion.
Some of the cloned cells differentiate into memory
cells and the rest of the clones become plasma cells.
B cells remember the shape of the antigen that they
have fought and recollect when they see the same
antigen again. This process defined as secondary
response, is a feedback of the past event for a current
input. This process helps the system to learn and is
called as reinforcement learning. Plasma cells
produce cells with higher affinities (Castro & Von
Zuben, 1999).

• Jerne’s idiotropic network deals with the interaction
of antibodies. Jerne’s network is a network of B cells
that communicate the shape of the antigenic epitope
amongst them through idiotopes and paratopes. This
also transforms the receptors according to the
antigenic pattern. This shape transformation is an
important role of information transfer and
communication between the B cells (Jerne, 1984).

Figure. 2 show the overall functioning of the immune
system. The immune system recognizes the antigens and
the antigenic patterns are identified. On identification of
an antigenic pattern, the B cells communicate the
information in parallel to each other by means of
paratopes and idiotopes in the network. Paratopes match
with the epitopes of the antigen to recognize the antigen.
Paratopes also change their shape to strengthen the bond
between the epitope and the paratope. However, the
binding stays only for a short time called the tolerization
period (Hofmeyer, 2000) within which a number of
receptors should bind the antigen. When this process of
binding within a short period happens, the B cells gets
activated and performs a set of actions to kill the antigen
(Hofmeyer, 2000). On activation, every B cell responds
by changing the shape of the receptor according to the
antigenic epitope. B cells that have higher affinity
towards the antigen are the ones that recognize the
antigen. The useful cells undergo multiplication by clonal

B cell Epitope of the antigen

B cell receptor

 Antigen

 Clonal expansion and selection

Ag stimulus

 B cells

Bc Bc

 B cells B cells

Bc

Memory
Plasma cells

Immune network

Pattern recognition

expansion and produce high affinity cells or clones. Since
the antigen has multiple epitopes and the B cells are
monospecific (Castro & Von Zuben, 1999) with a single
type of receptor, B cells work together to kill the antigen
through immune network. Part of the clones differentiate
into plasma cells that create higher affinity cells and the
rest turn out to be memory cells that remember the
antigen that was destroyed. Thus the human system
attains immunity against the antigens.

Figure 2: Representation of the human immune system.

3 Multi Agent Systems
Multi agent systems (MAS) deal with the behavior
management in collection of several independent entities,
or agents (Wooldridge, 1999). There are several
definitions for agents. We have chosen two definitions of
agents.

Ø Nwana and Ndumu defined an agent as “a component

of software and/or hardware which is capable of acting
in order to accomplish tasks on behalf of its user”
(Nwana & Ndumu, 1997).

Ø Agents that operate robustly in rapidly changing,
unpredictable, or open environments, and where there
is a significant possibility that actions can fail are
known as intelligent agents or sometimes called
autonomous agents (Bond & Gasser, 1998).

Agents can exist alone or in a society of agents called
multi agents (MAS). Multi agents are a population of
agents, that is, more than one agent can change the
environment to accomplish the task. They are distributed
computational systems (Cho & Tae-Lim, 2001) in which
each agent in MAS has a list of individual goals or tasks
that it will perform. At the same time, MAS has global

goals that all the agents will strive to achieve where the
individual efforts of each member agent are put together
toward reaching the MAS’s global goals (Huhns & Singh,
1998). The advantage of the MAS is that the limitations
of the individual capabilities of the agents are eliminated
(Abul et al., 2000). Agents with a fixed goal learn how
to change the environment to achieve the end goal. This
process is called reinforcement learning in agents. In
order to achieve an independent and global problem
solving, the agents behave according to its defined
characteristics. Some of the characteristics of agents that
define their behavior are autonomy, friendliness,
reasoning, learning, communication and coordination
mechanisms. Similarly, there are different environments
according to which the agents perform the goals. The
multi agent environment is usually open, decentralized,
and contains autonomous agents (Huhns & Stephens,
1999). In summary, agents are entities with well-set
goals, actions and knowledge in an environment that
senses, communicates, coordinates, learns and makes
decisions according to the environment (Cho & Tae-Lim,
2001). The following section briefly describes some of
the characteristics of the agents and different kinds of
environment (Mohammed, 2000).

3.1 Characteristics of the Agents and the
Environment

The characteristics of the agents are as follows.

1. Autonomy in agents is a measure of self-sufficiency.
The agents that operate on their own are independent
agents, and if they are restricted by external
influences then they are called controlled agents.

2. Sociability is a behavioral measure of an agent to
think about itself or about others. An altruistic
agent acts regardful of others benefits, and is
unselfish. In contrast, an egoistic agent acts with
excessive thoughts of self and is self-loving.

3. Agents could be friendly and be cooperative or
compete with each other.

4. Agents are classified into reactive and deliberative
according to their level of cognition. The former
ones sense and react in a timely manner for an
environmental change and the latter ones reason out
before making actions.

5. Mobility determines if the agents are stationary or
itinerant. Stationary agents do not move and
itinerant agents are mobile. Other characteristics of
the agents that deal with the agent’s adaptability,
rationality and locality can be referred to the
literature (Mohammed, 2000).

An agent may have a problem in deciding which of its
actions it should perform in order to best satisfy its design
objectives. The complexity of the decision making
process can be affected by a number of different
environmental properties. The following are various
environments stated by Russell and Norvig. (Russell &

Norvig, 1995; Mohammed, 2000).
An accessible environment is one in which the agent can
obtain complete, accurate, up to date information about
the environment’s state. The more accessible an
environment is, the simpler it is to build agents to operate
on it. Complex environments like the physical world are
defined as inaccessible environments.

There are also other kinds of environments. Deterministic
environment and non-deterministic environment deals
with the certainty of agent’s action. Episodic and non-
episodic environment deals with the performance of
agent’s in discrete episodes without any links or linked
actions with the past and current data respectively.

4 AISIMAM - Artificial Immune System
Based Intelligent Multi Agent Model

The backbone of AISIMAM involves imitating the human
immune system in terms of features and functions in multi
agent systems. The motivation for this research comes
from the fact that artificial immune system has found
solutions for several applications. In the same context
agent based solutions have also been developed in
different application domains (Cho & Tae-Lim 2001,
Abul et al., 2000). The reason for developing the
AISIMAM is due to the similarities observed between the
immune system architecture and the architecture of the
agents. The distinct similarities between the agents and
the immune system are

• Both are distributed or decentralized systems
• Both have multiple autonomous entities
• Both have individual and global goals
• Both systems learn from their experience
• Both are adaptable
• Both sense the changes in the environment

and act accordingly
• Both systems communicate and coordinate
• Both possess knowledge with which they

make intelligent decisions.

Therefore, immune system based multi agent architecture
is derivable. The following section describes the multi
agent systems with necessary comparisons and
explanations.

4.1 Comparison of AIS and Multi Agent
System Parameters

The model defines the non-self cells (antigens) and
self-cells (B & T cells) as two agents with different
characteristics and goals. Therefore, the two types of
agents in AISIMAM are

• Antigens are modeled as non-self agents
(NAGs) and

• Lymphocytes or self-cells corresponds to self-
agents (SAGs)

We define the environment to be a matrix in which both
the NAGs and the SAGs operate. The environment can be

any one of the types of environment explained in section
3.1 depending on the application. We assume that there is
an information vector for each non-self agent. This could
represent a disturbance in a process, malfunction or a
virus in a computer network depending on the application.
The information vectors correspond to the epitopes of the
antigen. Similarly, each self-agent has an information
vector that defines the self-goals. The information
vectors correspond to the receptors of the lymphocytes.
The information vector can contain a single datum or
multiple data. For example, the information could be a
location information, identification number, text
information, or all of them depending upon the
application. We consider this information to be the
idiotopes and the paratopes. However, the model does
not distinguish between the paratopes and idiotopes.
Instead, the target will be to perform the end goal with the
available information by each self-agent. The end goal
could be destroying the non-self agent as the antigen is
killed in the IS, or it can be to identify the best action sets
of each self-agent to react to the non-self agent’s action
vector. This is however problem dependent.

The information vectors and the characteristics of the
self and the non-self agents differ from each other. This
is similar to the structures of the epitopes of the antigen
and the paratopes of the lymphocytes. In other words,
the agents perform individual actions or goals determined
by the action generator function and the global goal is the
coordinated actions of the individual SAGs. The
individual action of the agent corresponds to the receptor
shape change in a B cell and the coordinated actions
correspond to a group of B cells killing the antigen.

The SAGs are assumed to have sensory capability to
identify the NAG within a region called sensory
neighborhood. They also possess the capability to
communicate the NAG information to the other SAGs
within a region called communication neighborhood. The
model assumes that the communication neighborhood is
greater than the sensory neighborhood. This is in
comparison with the capability of the B cells to recognize
the antigenic pattern within a particular neighborhood. In
immune system, the communication circle is analogous to
communication between B cells connected in the immune
network (Jerne’s Network). In other words, every B cell
communicates the information to another B cell that is
within the communication neighborhood in the immune
network.

The agent model describes five stages of processing
namely Pattern recognition, Binding process, Activation
process, Post activation process and Post processing.

In pattern recognition, SAGs recognize the presence of
the antigen by the stimulation function and identifies the
NAGs by an identifier function. The model defines an
affinity function that calculates an affinity value between
the actions of the self and the non-self agents. This
process is defined as binding process. In the immune
system, the affinity is proportional to the binding between
the B cell receptors and the epitopes. The affinity

Receptors Jerne’s Immune Network

 SAG – SAG comm.

B cells Epitopes

 Epitopes

SAG

SAG

SSAAGG

NAG

SAG

Memory

 Antigenic
Stimulus

Sensory
Neighborhood

Communication Neighborhood
Environment

calculation in the agents is similar to the affinity between
the epitope of the antigen and the receptor of the
antibody. However, the binding is not modeled separately
in AISIMAM. For instance, the affinity function could be
a distance metric such as the Euclidean distance.

In order to imitate the IS, in the activation process we
choose the affinity values that are greater then a set
activation threshold. Activation threshold will help the
agents to find out the higher affinity actions called mature
actions that are closer to the desired goal. Here, we
define the binding period as the time taken by a number
of agents to bind the NAG. The model defines this time
as a sum of recognition time and grouping time .
Recognition time is the time taken by every agent to
recognize the NAG and is the same for every agent. The
grouping time is the time taken by the other agents to
react to the identified NAG and this time differs from
agent to agent.

The post activation process involves cloning. Here, the
agents are reproduced with the mature action. A part of
these cloned agents differentiate into memory agents
containing the matured action obtained as a result of a
particular NAG. The rest of the clones become plasma
agents that create higher affinity actions through the
action generator function. Post processing involves the
primary and secondary response of immune memory,
which is also included in the model. Hypermutation in
agents is the process of generating new actions exists
conceptually. Once the end goal is reached, memory
agents remember the actions performed to reach the goal.

All the self-agents work in an agent network similar to
Jerne’s network. The process of information transfer and
communication between the agents is an analogy of the
agent network to the immune network. The nature of the
agent network is application dependent. Suppression in
the agent network is determined by the suppression
function. In immune system, even in the absence of the
antigenic stimulus, the B cells perform suppression. In
AISIMAM, in the absence of antigenic stimulus
suppression is performed. The overall representation of
the AISIMAM is shown in Figure 3.

4.2 AISIMAM - Operational Scheme and the
Mathematical Representation

This section deals with the notations used in the model,
followed by the definitions of the parameters, and the
algorithm.

4.2.1 Parameter Definitions

In the model, we define the agents namely the self
agents (SAGs) and represent them by iS , where i = 1,
2…N and the non-self agents (NAGs) as jN where j =
1,2...M. We define the problem domain or the
environment E by j iNSE ji , ∀∪= . For all Si ∋ E,
there exists an information vector of n elements given by

[]n
i b, bbB …= 21 . For all Nj ∋ E, there exists an

information vector of m elements given by
]...[2,1 m

j aaaA = . Define Ta to be the activation
threshold.

Figure 3: Representation of AISIMAM – An AIS based

Intelligent Multi Agent Model

4.2.2 AISIMAM - Algorithm

Initialize all the parameters defined as above

For each Si

• Calculate),(1,
ij

ij BAfM = where Bi is the
information vector of iS , and A j is the information
vector ∀ jN in the sensory neighborhood Ns

sNin
jA

jAiBjAf
an if 0

 no if 0
),(1







∃≠
=

• If ()0, ≠ijM

o The information about the NAG is transmitted to
the other SAGs through the immune network

o For each NAG Nj, within the Ns, the sensory circle
where j = 1, 2…e, and e≤ M

1. Pattern Recognition and Identification

Identify the NAG using the identifier function I that is
given by

)(2 jj AfI =

Generate possible new actions i
k

i
j UU using

action generator function that is a function of Ij

)(3 j
i
j IfU = where kj1=

2. Binding Process

Find the affinity for all possible vectors i
jU by the

affinity function

 ...k j UfAf j
ii

j 1),(4 =∀=

3. Activation Process

Choose mature actions whose affinity is greater than
activation threshold Ta and store in the action set Y

 { }p, j aTi
jAfi

jUY 21 where| =>=

• The activation of the mature actions within the binding
period tb is given by

[])()(*),(5 bttutubtYfi
jU −−=

where u(t) is the unit sep response





=
∃≠ activation if 0

activation no if 0
),(5 btYf

If a best action needs to be chosen, the threshold
should be chosen so high that p = 1.

4. Post activation processing - Cloning

If ()0≠i
jU

In this case, agents are reproduced with mature
action set Y in SAGs. iS is cloned with mature
action set Y to generate q SAGs.

cS qN.... Nc ++= ,,1where

End If

5. Post processing - Memory

Choose s number of memory agents a
zM from the

cloned agents

If ()0≠i
jU

ca
z SM =

where qssN Nz <++= where,,,1 L

• Memory Response

The efficiency of the primary and secondary
responses are given by

 ηp = f6 [Np, Tp]

ηs = f7 [Ns, Ts]

where Tp >>Ts and Np << Ns and Np and Ns are the
number of actions required to kill the NAG in the
primary response. Tp & Ts are the time taken for the
primary and secondary responses respectively. The
efficiency of the primary and secondary responses is
ηp and ηs respectively.

• Plasma Response

Rest of the clones are defined as plasma agents zS
where qNs Nz +++= ,,.........1 . Here q-s
agents are added into the system.

End If

End For

Else perform suppression by the suppression function

),(8,
ji

ji BBfP = where i, j are of Si and Sj

End If

 End For

5 Need for a Mathematical Representation
The goal of AISIMAM is to provide a mathematical
representation for the operation of immune system.
Several immune modeling such as the immune network
model (Castro & Von Zuben, 2001), negative selection
algorithm (Dasgupta), mathematical modeling of the
clonal selection (Chowdary, 1999) and immune memory
(Smith et al., 1996) agent based immune systems (Mori,
Tsukiyama and Fukuda 1997, Dasgupta 1998) exist in the
literature. AISIMAM differs from the other models in the
context of mathematical functions defined for the entire
process. In order to prove the usefulness of the
representation, two applications namely bar code
recognition and mine detection are compared.

In the case of barcode recognition, assume that the non-
self agents jN or antigens are the characters to be
recognized. The B cells are the software agents iS whose
information vector contains the corresponding ASCII
characters. Each agent has a defined group of characters.
Environment E has the information about the recognized
and the unrecognized characters. If the agent can
recognize the character, recognition is achieved.
Otherwise the agents can communicate through the
environment to find if the unrecognized character falls
into its category. The stimulus M is defined by the
recognition of the start bit pattern of the barcode that
defines the start of the recognit ion process. The identifier
function I is a character recognition function. The affinity
function Af can be defined as the matching function
between the recognized character and the character in the
agent’s

 information vector. Affinity threshold Ta can be set to 1
that chooses the best match. In this case cloning is not
utilized. Thus the agents are not reproduced. In this
application, sensory and communication neighborhood is
zero, since the agents are not in a space.

In the case of mine detection application, non-self agents
are the mines and the mobile robots are the self-agents. In
this case, both are hardware agents. The sensory and
communication neighborhoods are defined by the distance
metric. The identifier function I becomes finding the
mine by the identifier and the location of the mine. The
affinity function Af is the Euclidean distance. Affinity
threshold T a can be set to a predefined value. Mine
detection application is explained in detail in the
following paragraphs.

As can be seen above, the model can be applied to
different applications by changing the functions.
Therefore, the generalized functions provide a global
representation for several agent based applications.

6 Application of AISIMAM to a Mine
Detection Problem

To experimentally verify the architecture, AISIMAM is
applied to a specific problem. The problem implemented
is mine detection and diffusion. The experiment is

simulated in MATLAB. The following section discusses
the parameters of AISIMAM used for this specific
application and the pseudo code for the problem.

6.1 Parameter Definitions
The following section briefly describes the characteristics
of NAGs, SAGs and environment for mine detection.

6.1.1 NAGs and its characteristics

The antigen or the Nonself agent (NAG) is the mine.
Define the area to be explored for detecting the mine.
This defines the boundary of the environment for the
agents to detect the mine. Mines are deployed in a
uniform distribution within the environment. The initial
locations correspond to the epitope or the receptor of the
antigen. Characteristics of the mines are stationary,
unfriendly and competitive. Circling the mine is defined
as diffusing the mine.

6.1.2 SAGs and its characteristics

Define the B cells to be the self-agents (SAGs). Deploy
all the SAGs in a uniform distribution within the
environment. The initial locations of the SAGs correspond
to the receptors of the B cells. Characteristics of the SAGs
are itinerant, independent, cooperative, altruistic and
deliberative.

In mine detection application, it is assumed that the
environment is accessible and the self-agents get updated
information about the environment.

Assume that all the SAGs have the capability to sense the
mine and communicate between the agents within the
sensory and communication circles respectively. We
have used Euclidean distance measure for both the cases.
Every SAG (robot) recognizes the mine and identifies the
location of the mine within this sensory circle. On
identification of the NAG (mine) every SAG
communicates to the other SAGs in a Jerne’s network. For
this problem, we have assumed Jerne’s network as a
broadcast network. It is also assumed that the
communication between the SAGs is larger than the
capacity of every SAG to sense the NAG.

6.1.3 Pseudo Code For The Mine Detection
Problem

The pseudo code for the mine detection problem is as
follows.

1. Initialize the SAGs and NAGs in a uniform
distribution.

2. diff_use = 0; (Initially there is no diffusion)

2.1 While (diff_use ≠ number of_mines, Ni)

2.2 For each SAG Sj, do the following

If (there is a mine within the sensory circle)

a) Identify the location of the mine

b) Inform the locations of the mines to the other
self-agents within the communication circle.
This corresponds to the communication through
the immune network.

c) SAG generates new actions that are eight
different new locations to move

d) Find out the distance (affinity function) between
these locations and mine locations. The Affinity
is calculated by the Euclidean distance between
the generated locations and the robot location.

e) Choose the distance that is lesser than an affinity
threshold and move to that location.

f) If (this location is the mine location)

 If (there are 4 SAGs around the mine)

Diffuse the mines, update the number of
mines diffused, (diff_use = diff_use + 1);

If (diff_use == number of mines),

Break; End If; End While

STOP

Else wait until there are four SAGs around
the mine; End If

 Else do step 2.2. c. End If

Else If (there are any self-agents within the
Communication circle)

• If (non-self information is available) repeat from
step 2.2. End If

 Else Make random movements from the current
location, since there is no NAG information from other
self-agents and no mine detected within the sensory
circle

End If; End For; End While; STOP

Memory is not used in this problem since there is no
usefulness in remembering the location of the mine once
it is detected and diffused.

6.1.4 Simulation Results

We assume that a priori knowledge of the minefield
intensity is known in the given environment. In the
simulation, this means that the number of mines in the
given environment is known. Therefore known number
of mines is deployed in a uniformly distributed manner in
the given area. This creates the minefield. We also
deploy a known number of mobile robots in a uniformly
distributed manner in the environment. The simulation
differentiates the mobile robot and the mine by using a ‘+’
for a mine and a ‘o’ for robots for representation while
the code identifies a mine by a ‘0’ and the robot by a ‘1’.
The information vector for the mine and the robots
contain the initially deployed location information along
with the identifier. Table 1 shows an example of the mine
and the robot information vector. The simulation also
requires setting the sensory circle of the robot and the

communication circle. We have assumed that the
communication circle is greater than the sensory circle.

Table 1: An Example of Information Vector of Mines and

Robots

 X coordinate Y coordinate Identifier

Mine 4
3

5
7

0
0

Robot 2 3 1

The simulation is verified for the following variations.

• By increasing the sensory range from 3 to 9 units of
distance measure.

• The communication circle was varied between 5 and
11 units of distance measure.

• Changing the environments area to 10 x10 and 32 x
32 rectangular grids.

Here, the environment is accessible where each SAG has
the information about the mines and the other SAGs in the
sensory and communication neighborhood. That is, on
identification of the mine, SAGs within the
communication circle exchange about the number of
mines detected and their respective locations through the
agent broadcast network. A sample environment vector is
shown in Table 2. It can be seen from Table 2 that the
robot 1 has the information about mine 1 that is accessible
to robot 2 if it is within the communication circle because
robot 2 checks for the information available with robot 1
since it has not identified any mines. However, the
environment becomes inaccessible on the assumption that
the environment is not updated or when the
communication circle is zero (c_cir = 0). It is useful to
make the environment accessible in practice because, the
mobile robots for mine detection can be provided with the
capability to communicate.

Table 2: An Example of the Environment Vector

Index

Coordinat
es

(Initial)
 X
Y

Identifier No of
mines

detected

Detected
Mine

locations

Mines 1
 2

3
4

7
5

0
0

0
0

--
--

 Robots 1
 2

2
5

4
2

1
1

1
0

4,5
--

The experiment is repeated for different populations of

mines and robots. The typical range for the mines
deployed are varied between 10 and 70 and accordingly
and the robots are varied between 40 and 100. Figures 4
and 5 show the simulation with mines and robots with
their initial locations and the four agents surrounding the
mine. The following results prove that AISIMAM is able

to solve the mine detection problem successfully.

Figure 4: The locations of mines and robots after 2
iterations

Figure 5: Four robots have circled one mine after three
iterations

6.1.5 Observations

The following cases are studied and results are shown
below.
a) For an increase in the population of mines and increase

in population of robots the computational complexity in
terms of rate of convergence (or the number of steps
needed for the algorithm to converge) is studied. For
an environment size of 32x32 and a constant sensory
and communication circles, the individual rates of
convergence are shown in Figures 6 and 8 and the
average convergence rate can be seen in Figures 7 and
9. In Figures 6 to 9, x-axis is the number of mines, y-
axis is the number of agents and z-axis is the number of
iterations.

b) For an increase in the sensory region and
communication region the computational time in terms
of rate of convergence is studied. Increasing the sensory
and communication circles reduce the required the
number of steps for the algorithm to converge. This is
due to the fact that robots senses more area and can
communicate with more robots and check if others have
mine information if they cannot find any.

The experiment is repeated for the same number of mines
and number of robots with a step increase in the sensory
and communication circles in the following combinational
pairs (3,5), (5,7), (7,9) and (9,11). The number of
iterations for a chosen value of robots and mines can be
seen in Figures 6 and 8. The Figures 7and 9 shows the
average number of iterations for sensory and

communication circles to be (5,7) and (7,9). However it
was observed that increasing the sensory and
communication circle reduces the average number of
iterations for the algorithm to converge.

Figure 6: The rate of convergence for variation in mines
and agents for 32x32, sen_c = 5, c_cir = 7

Figure 7: The average rate of convergence for variation in
mines and agents for 32 x 32, sen_c =5, c_cir = 7

Figure 8: The rate of convergence for variation in mines
and agents for 32 x 32, sen_c = 7, c_cir = 9

7 New Aspect of the Work
Literature survey shows that there are several applications
on Artificial Immune Systems and Multi Agent Systems
independently. Some of the recent work also addresses
some of the properties of AIS to agent systems to solve a
particular task (K. Mori, M. Tsukiyama and M. Fukuda
1997, D. Dasgupta 1998). AISIMAM is a generic model
that provides to define the SAGS and NAGS in terms of
functions to be determined by the applications. Individual
goals and a global goal for the agents can also be defined
by the functions. The model is flexible and unique

because the parameters of the model can be changed by
the formulated functions depending on the application.

Figure 9: The average rate of convergence for variation in
mines and agents for 32x32, sen_c =7, c_cir = 9

8 Future Work
A mathematical representation of the immune network is
expected to be added in the future. Further conclusions
can be arrived from the following additions. In the mine
detection application,

a) We have assumed that the robots themselves do not get
destroyed in the detection and diffusion process. But
in practice, a robot can fall on the mine during
deployment. So in future, the algorithm can be
modified to analyze the case of robot falling on the
robot while deployment and call that failure rate
analysis.

b) Another assumption is that the NAGs or the mines in
this application are static. This is true because in
practice all the mines are static. In future applications,
the NAGs could also be dynamic and hence the
experiment can be repeated for the agent behavior.

c) Also, in the mine detection application, the memory is
not used. This is because, there is usefulness in
remembering either the location information of the
mine or the type of mine itself. In future, we can
redefine the application more specific by employing
different functions for different kinds of mine. In this
process, memory will be helpful in remembering the
information about the type of mine that could be useful
rather than the location information.

9 Conclusion
This research draws a generic model named AISIMAM
based on artificial immune system applicable to
intelligent multi agents. An application for the model is
simulated. The mine detection and diffusion problem is
experimented and the results show that AISIMAM is
successful. The motivation for this application is that in
future the mine detection can be performed efficiently by
deploying mobile robots that have enough intelligence,
communication and coordination to detect and diffuse the
mines. To verify the generality of the model, more

applications will be simulated and verified in the future.
This research is conducted with the support of Gleason
R&D Funds in Multi-agent Bio-Robotics Lab (MABL) at
Rochester Institute of Technology.

10 References
O. Abul, F. Polat and R. Alhajj (2000). “Multiagent
Reinforcement Learning using Function Approximation”,
IEEE Transaction on Systems, Man and Cybernetics, Part
C: Applications and Reviews, Vol 30, No 4, November.

A. H. Bond and L. Gasser (Eds.), (1988). Readings in
Distributed Artificial Intelligence, Morgan Kaufman
Publishers Inc, San Mateo, California, USA.

F. M Burnet (1978). “Clonal Selection and after”, In
Theoretical Immunology, (Eds.), G. I. B. S. Perelson and
G.H. Pimbley Jr., Marcel Dekker Inc, pp 63 – 85.

L. N Castro, and F.J Von Zuben (1999). “Artificial
Immune systems: Part I, Basic Theory and Applications”,
Technical Report – RT DCA 01/99, FEEC/UNICAMP,
Brazil, 95 P.

L. N Castro and Von Zuben (2001). “aiNet: An Artificial
Immune Network for Data Analysis ”,
http://www.dca.fee.unicamp.br/~lnunes/publicat.html.

K. H Cho and J. Tae Lim (2001). “Multiagent
Supervisory Control for Anti fault Propagation in Serial
Production Systems”, IEEE Transactions on Industrial
Electronics, Vol 48, No 2, April.

D. Chowdary (1999). “ Immune network : An example of
Complex Adaptive Systems”, Part II, pp 89–105, In
Artificial Immune Systems and their Applications,
Springer-Verlag, Heidelberg, Germany, 1999.

D. Dasgupta and N. Attoh-Okine (1997). “ Immunity
Based Systems: A survey”, Proceedings of the IEEE
International Conference on Systems, Man and
Cybernetics, pp 363 – 374, Orlando, Florida.

D. Dasgupta (1998). “An Artificial Immune System as a
Multi Agent Decision Support System”, Proceedings of
the SMC98, IEEE international Conference on Systems,
Man, and Cybernetics, Vol 4, pp 3816-3820, Sandiego,
Califronia.

D. Dasgupta (1999). Artificial Immune Systems and Their
Applications, Springer-Verlag, Germany.

D. J. Smith, S. Forrest and A. S. Perelson (1996).
“Immunological Memory is Associative”, Part II, pp 105
–112, Artificial Immune Systems and Their Applications,
Springer-Verlag, Germany.

K. D Elgert (1996). Immunology - Understanding the
Immune System, John Wiley & Sons, Inc, NY, USA.

P. Hajela and J. S Yoo (1999). “Immune Network
Modeling in Design Optimization”, In New Ideas in
Optimization, (Eds.) D. Corne, M. Dorigo & F. Glover,
pp. 203-215, McGraw Hill, London.

A. Ishiguro, Y. Watanabe, and T. Kondo (1997). “A
Robot with a Decentralized Consensus-Making
Mechanism Based on the Immune System”, In Proc.
ISADS’97, pp. 231-237.

G. W. Hoffmann (1986). “A Neural Network Model
Based on the Analogy with the Immune System”, Journal
of Theoretical. Biology, 122, pp. 33-67, 1986.

S. A. Hofmeyer and S. Forrest (2000), “Architecture for
an Artificial Immune System”,
http://www.cs.unm.edu/~steveah.

M. N. Huhns and M. P. Singh (1998). Readings in
Agents, Morgan Kaufman Publishers Inc., San Francisco,
California, USA.

M. N. Huhns and L. M Stephens (1999). “Multiagent
Systems and Societies of Agents,” Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence,
Gerhard Weiss (Eds.), MIT Press, Cambridge,
Massachusetts, USA.

J. E. Hunt, and A. Fellows (1996). “Introducing an
Immune Response into a CBR system for Data Mining”,
In BCS ESG'96 Conference and published as Research
and Development in Expert Systems XIII, 1996.

N. K. Jerne (1984). “Idiotypic networks and Other
Preconceived Ideas”, Immunological review, Vol.79,
pp.5-24.

A. M. Mohammed (2000). “Benevolent agents, PhD
Thesis”, Department of Electrical and Computer
Engineering, University of South Carolina, USA.

K. Mori, M. Tsukiyama and M. Fukuda (1997).
“Artificial Immunity Based Management System for a
Semiconductor Production Line”, Proceedings of the
SMC2001, IEEE international Conference on Systems,
Man, and Cybernetics, Vol 1, pp. 851 – 855, Atlanta,
Georgia, USA.

H. S. Nwana and D.T. Ndumu (1997). “An Introduction
to Agent Technology”, Software Agents and Soft
Computing, H. S. Nwana and N. Azarmi (Eds.),
Springer-Verlag, Berlin, Germany.

S. Sathyanath and F. Sahin (2001). “Artificial immune
Systems Approach to a Real Time Color Image
Classification Problem”, Proceedings of the SMC2001,
IEEE international Conference on Systems, Man, and
Cybernetics, Vol 4, pp. 2285 – 2290, Arizona, USA.

J. Timmis, J, M. Neal and J. Hunt (1999). “ An Artificial
Immune System for Data Analysis”, Proceedings of the
International Workshop on Intelligent Processing in Cells
and Tissues (IPCAT) , Indianapolis, U.S.A,

S. Russell and P.Norvig (1995). Artificial Intelligence: A
Modern Approach, Prentice Hall, New Jersey, USA.

M. Wooldridge (1999). Multiagent systems: a Modern
Approach to Distributed Artificial Intelligence, Gerhard
Weiss (Eds.), The MIT press, Massachusetts, USA.

Immunocomputing for Bioarrays

Alexander O. Tarakanov
St. Petersburg Institute for Informatics

and Automation,
Russian Academy of Sciences,

14-line 39, St. Petersburg, 199178,
Russia

Larisa B. Goncharova
Institute Pasteur of St. Petersburg,
Mira 14, St. Petersburg, 197101,

Russia

Tatyana V. Gupalova
Institute of Experimental Medicine,

Russian Academy of Medical Sciences,
St. Petersburg , Russia

Sergei V. Kvachev and Alexander V. Sukhorukov
Transas Co.Ltd,

St. Petersburg, Russia

Abstract

This paper presents results of application of our
immunocomputing method to immune diagnostic
arrays. The method detects bound complexes of
immunoglobulin G (IgG) with protein G (pG),
and recognizes the concentration of IgG as the
result of IgG-pG interactions at each location of
a bioarray. This model system has been
developed as a prototype of a protein biochip for
immunoassay-based diagnostics, where bioarray
is a macro-variant of the biochip microarray,
while the software is a core of the biochip reader
and controller.

1 INTRODUCTION
By using optical densitometry or CCD (charge-coupled
device) imaging system, it is possible to compare the
differential protein levels among multiple samples.
However, large-scale high-throughput methods of
molecular immunology require rather complicated
information processing to collect, analyze and interpret
data. The problem becomes especially important for
modern biochip technologies.

Any device which incorporates bioreceptors, such as
antibodies, enzymes, cellular components of living
systems etc., is referred to as a biosensor. Moreover, any
biosensor that involves the use of a microchip system for
detection is considered a biochip (Stokes et al., 2001).

Biochips (biological microchips or microarray technique)
as the development and application of the arrays of
immobilized biological compounds have become a
significant trend in modern biology, biotechnology and
medicine. The main advantage of biochips over
conventional analytical devices is the possibility of
massive parallel analysis. Biochips – really new and
highly innovative products – are biological equivalents
for computer microchips and they appeared as a result of
application of the ideas of miniaturization, integration and

parallel processing of information from microelectronics,
where they were born, to biological processes. The chip
principle has now become the dominating theme for a
number of new proteomics technologies. Based on this
principle, two main systems are currently used for
analysis of multiple protein expression: two-dimensional
polyacrylamide gel electrophoresis coupled with mass
spectrometry and surface-enhanced laser desorption and
ionization (Huang, 2002). However, the requirement of
sophisticated devices often limits accessibility of these
systems. At the same time, numerous proteins can be
detected simultaneously and specifically using more
simple immunoassay-based protein array systems. This
approach (immunoassay) can be used to detect multiple
proteins, including antibodies and antigens, toxins etc.
Immunoassay-based microarray technologies can be
particularly useful in accurately measuring the difference
in individual protein levels between several samples,
which is sometimes very important in disease monitoring.

On the other hand, we have developed a pattern
recognition method based on our immunocomputing
approach (Tarakanov, Skormin and Sokolova, 2002).
Inspired by principles of antibody-antigen recognition in
the natural immune system, our method solve problems of
distinguishing background ("self") from patterns ("non-
self") and processing the patterns. We have developed a
rigorous mathematical basis and a software
implementation of the method. The method has been
applied to compute ecological atlases, predict danger of
the plague infection, detect intrusions in computer
networks, etc. (Kuznetsov et al., 1999; Tarakanov et al.,
2000; Tarakanov and Skormin, 2002). In the present
paper we apply our method to immune diagnostic arrays.
We detect bound complexes of IgG with pG, and
recognize the concentration of IgG as the result of IgG-
pG interactions at each location of a bioarray. This model
system has been developed as a prototype of a protein
biochip for immunoassay-based diagnostics, where
bioarray is a macro-variant of the biochip microarray,
while the software is a core of the biochip reader and
controller.

2 BIOARRAYS

2.1 GENERAL APPROACH
In this work the sampling platform is a nitrocellulose
membrane exposed to different concentrations of IgG and
subsequently analyzed using a direct immunoassay
involving pG labeled by horseradish peroxidase (pG-
HRP) or carbon particles (pG-CP).

To quantify the exact amount of proteins, multiple
standard curves can be generated and according to them
the exact amount of individual proteins can be detected.
We used the twofold dilution standard curve as an
example (model) for biological experiments.

The ability of the surface proteins of Streptococci, pG
among them, to interact with human and animal plasma
and serum proteins is well known and has gained a
prominent place in immunochemistry. Immunoglobulins
interact with the surface receptor of the microorganism by
means of their Fc-fragment, that allows to use widely the
bacterial pG in all clinical assays when it is necessary to
detect serum antibodies. We use pG-IgG interacting
system to obtain the protein arrays in the direct
immunoassay.

2.2 MATERIALS AND METHODS
Nitrocellulose membranes for protein arrays ("dot blots"),
pore size 0,45 µm, have been purchased from Millipore
Corp., USA, Filter type HA, Cat.No HAHY 304 FO.

Human IgG (Fractions II, III) has been purchased from
Sigma, USA.

Recombinant pG of group G Streprococci, strain G148,
has been cloned at the Institute of Experimental Medicine,
Russian Academy of Medical Sciences, St-Petersburg,
Russia (Gupalova and Totolian, 1996). The
corresponding HRP-conjugated pG (pG-HRP) has been
prepared by periodate method (Frimel, 1987).

The detection reagent of recombinant pG covalently
conjugated to particles of colloidal carbon (pG-CP)
ranging from 150 to 200 nm in size, has been kindly
gifted by Dr. M.B. Raev, Institute of Ecology and
Genetics of Microorganisms, Russian Academy of
Sciences, Perm, Russia (Plaksin et al., 1996).

2.3 PREPARATION OF BIOARRAYS

2.3.1 Spot
We use nitrocellulose membranes to spot the twofold
dilutions of IgG.

To spot capture proteins IgG onto membranes, we place
the nitrocellulose strips on the top of white light box. We
load manually 5 µl of solution of IgG (the initial
concentration of IgG is 250 µg/ml) onto a single spot by a
10-µl pipettors.

2.3.2 Immunoassay
We load human IgG onto membranes as described above.

We block membranes with "blotto" solution (1% non-fat
milk, pH 7,2) for 1 hour at room temperature. "Blotto" is
used as washing and dilution solution at all steps, if
necessary.

In case of usage pG-CP as the detection reagent, the 5-10
minutes detection procedure with conjugate follows after
the 20-30 minutes incubation period.

The results are visualized as black dots directly on a white
solid phase surface of nitrocellulose membrane. There are
no additional steps.

In case of usage of pG-HRP conjugate, we incubate
membranes for 1 hour at room temperature and use α-
naphthol as the substrate for HRP. We dilute 6 mg of α-
naphthol in 2 ml of methanol; we add 8 ml of 0.01 M Tris
pH 7.5/0.5 M NaCl and 6 µl of 30 % hydrogen peroxide
to the final solution.

2.3.3 Solid-phase immunoassay
In this study we have implemented a direct immunoassay
method using pG-labeled probes. We use nitrocellulose
membranes (strips) for the assays. We spot different
concentrations of human IgG onto membranes as the
model of "calibration curve": {250, 125, 62.5, 31.2, 15.6,
7.8, 3.9, 1.95, 0.99, 0.5} µg/ml.

We dry the membranes at room temperature for 10
minutes and then place them in blocking solution of
"blotto" to block any unoccupied binding sites on the
membrane surface for 1 hour at room temperature. This
step is followed by removal of the blocking solution. We
prepare dilutions of pG-HRP or pG-CP (usual dilutions
are 1:2000 and 1:25) in the same buffer as for the
blocking step. After incubation of the membranes in the
conjugate solution for 0,5-1,0 h at room temperature, we
remove the solution and wash the membranes 5 times
using 0,5 % Tween 20 in PBS.

When the pG-CP conjugate is used in the assay, there are
no additional steps and the results of the assay are
visualized as black dots directly on the nitrocellulose
surface. The obtained results are stable and require no
specific fixation or termination procedures.

When the pG-HRP conjugate is used in the assay, there is
an additional step of the enzyme-substrate reaction with
α-naphthol, as described above (see Section 2.3.2.).

2.3.4 Experimental results
We obtain bioarray as a nitrocellulose strip with the rows
and columns of IgG. Figure 1 shows an example of the
bioarray. Typical size of the bioarray is 15×70 mm
approximately. We have prepared about 50 of such
bioarrays.

Figure 1: Bioarray of pG-IgG

3 SOFTWARE

3.1 COMPUTER INPUT
We scan bioarrays by a custom scanner HP ScanJet
5300C to make them available for processing on any
usual Personal Computer (PC). The resolution is 150 dpi
in color format. Conventional files in the bit map pixel
format (bmp) are obtained. We assign names to these files
according to the following format:

YearMonthDateGroupNumber,

where Group = {01, 02}, Group = 01 corresponds to pG-
HRP, and Group = 02 corresponds to pG-CP conjugates.
For example, the name of the bioarray's file in Figure 1 is
as follows:

0205140101.bmp,

which means May 14, 2002, pG-HRP conjugate, bioarray
#01.

A database prototype has been developed as a file in the
Exel format (xls). The records of this database correspond
to the bioarrays, where file name is a key to the record.
Another data correspond to conditions of bio-membranes
experiments, and results of image recognition.

3.2 IMMUNOCHIP EMULATOR
Software for image recognition by immunocomputing has
been developed as a version of software emulator of an
immunochip (Tarakanov and Dasgupta, 2002). The
emulator is being developed under the following standard
software: MS Windows'2000 operating system, MS
Visual C++ 6.0 Developer Studio, and OpenGL graphic
tools. Figure 2 shows a screenshot of the emulator.

The emulator works as follows.

User opens file with an image of bioarray (e.g., as in
Figure 1). The image appears in the left-hand screen of
the emulator.

User clicks the "Run Processing" button on the emulator
toolbar. The emulator recognizes the locations (spots) of
the immune reactions by distinguishing them from the
background of the image. Such spots are outlined by the
emulator (see squares in left-hand screen of Figure 2).

Then each spot is processed by the emulator to recognize
the concentration of IgG. The corresponding
concentrations are shown as the up-centered table in
Figure 2.

Right-hand screen graphics of the emulator in Figure 2
represent inner parameters of the method. They are used
by developers to control image recognition processes, as
described below.

Figure 2: Immunocomputing Software

3.3 MATHEMATICAL BASIS
Bioarray image is represented initially as a matrix MA of
dimension nL×nR. According to the (bmp) format, we
form this matrix as a matrix of real values:

mij = (rij+gij+bij)/3,

MA = {mij}, 0 ≤ mij≤ 255, i = 1,..., nL , j = 1,..., nR .

where r, g and b correspond to the red, green and blue
values of the pixel.

According to the "key and lock" principle of antibody-
antigen recognizing in the immune system, we consider
the matrix MA as a collection of "antigens-locks". To
compute "antibodies-keys", we form an inverse matrix M
of the same dimension:

M = 255− MA .

We represent this matrix in the following form:

M ≅ sLRT, LTL = 1, RTR = 1, (1)

where s is first singular value; L and R are first left and
right singular vectors of the matrix M.

It is known (see e.g., Tarakanov and Skormin, 2002) that
representation (1) corresponds to the first term of the so-
called Singular Value Decomposition (SVD). Such SVD
exists for any rectangular matrix over the field of real
values and can be computed by the following iterative
scheme:

L(1) = [1, ..., 1]T , L(1) = L(1) /| L(1)| ,

[R(k)]T = [L(k−1)]TM, R(k) = R(k) /| R(k)| ,

L(k) = MR(k), L(k) = L(k) /| L(k)| ,

s(k) = [L(k)]TMR(k),

k = 2,..., until | s(k) − s(k−1) | < ε .

According to (Horn and Johnson, 1986), such a scheme
converges to the maximal singular value and singular
vectors in general case of the matrix M.

First singular value s and corresponding singular vectors
L, R of the matrix M possess the following property:

s = LTMR , s ≥ PTMQ, ∀P,Q: PTP=1, QTQ=1 .

In other words, representation (1) of any real matrix M is
mathematically optimal (in the sense of the minimal least
square error), if, and only if, s is the first singular value,
and L, R are the corresponding singular vectors of the
matrix.

3.4 RECOGNITION ALGORITHMS
According to (Tarakanov and Skormin, 2002), unit
vectors L, R can be considered as a mathematical model
of "antibodies-probes", while w=−s is their binding
energy within so-called Formal Immune Network (FIN).
By such a way, using our immunocomputing approach,
we reduce two-dimensional input "antigen" MA to two
one-dimensional "antibodies" L, R. These "antibodies"
represent a kind of "internal image" of the "antigen",
generated by FIN. Figure 2 shows the profiles of such
"antibodies" in the right-hand screen.

Using decomposition (1), we reduce the problem of
detecting spots in the input image MA (left-hand screen in
Figure 2) to more simple task of finding local minima of
one-dimensional functions L, R (right-hand screen in
Figure 2). The emulator determines these minima as
"paratopes" (antigen binding parts of antibody), according
to an analogy of "antigen processing" by the natural
immune system.

For example, designate vector L in the k step of
processing as L(k), k=1,...,km , where km is a number of
local minimum. Hence, initially L(1)=L.

Determine global minimum of L(1) and sequentially cut
off the corresponding local "paratope" LP(1) by small
pieces, until a "self" level of the background be obtained.
Figure 3 illustrates such processing of the right-hand
"paratope".

By such a way, the emulator computes roughly a position
of the center and the bounds of the second row of the
spots of the bioarray (as shown in left-hand screen of
Figure 2).

Then the emulator cuts off the found "paratope" and
repeat processing on another step, until all "paratopes" be
found:

L(k) = L(k−1) − LP(k−1), k = 2,...,km .

Figure 3: Processing of the "Paratope"

Such "paratopes" of the left singular vector L correspond
to the rows of the bioarray. For example, if vector L has
two "paratopes" (as in Figure 3 and in the upper graphics
of right-hand screen in Figure 2), then the bioarray has
two rows of spots (as in left-hand screen of Figure 2).

Analogously, the emulator finds all "paratopes" of the
right singular vector R. They correspond to the columns
of spots of the bioarray. For example, if vector R has ten
"paratopes" (as in the lower graphics of right-hand screen
in Figure 2), then the bioarray has ten columns of spots
(as in left-hand screen of Figure 2).

As a result, the emulator detects roughly positions of all
spots of the bioarray as the squares (see left-hand screen
of Figure 2).

After that, the emulator defines more exactly positions
and sizes of the spots within the squares. According to
"key and lock" principle of "antibody-antigen" binding,
the emulator adjusts the shape of the "paratope" by
maximal overfall between the brightness of the
neighboring pixels of the "antigen" within every square.
This step of processing uses two directions: rows i and
columns j.

Let iC , jC are coordinates of the center, and r is half-side
of the square in pixels. The adjusted bounds of the spot ia ,
ib , ja , jb , are determined by the following way:

ia: max {mi,j−mi+1,j}, ib: max {mi+1,j−mi,j},

j = jC , i = iC−r, ..., iC+r,

ja: max {mi,j−mi,j+1}, jb: max {mi,j+1−mi,j},

i = iC , j = jC−r, ..., jC+r.

The process repeats with the new values:

iC = (ia+ib)/2 , jC = (ja+jb)/2 ,

r = max{(ib−ia), (jb−ja)}/2 ,

until the difference between previous r and the new one
becomes no more than two pixels. Figure 2 shows results
of such adjusting in left-hand screen, where emulator has
marked each detected spot by bold points.

After the spots are detected and adjusted, the emulator
recognizes the concentration of IgG in each spot using
SVD representation (1) of the spot image.

Let MS be matrix of the spot image:

MS ⊂ M, MS = {mi,j},

 i = iC−r, ..., iC+r, j = jC−r, ..., jC+r .

According to (1), the emulator computes first singular
value s of this matrix, and consider the concentration as
follows:

C(IgG) = ce sm ,

ce ≅ 1000, sm = s / (4r2) ,

where sm is mean singular value per pixel of the spot, and
ce is an experimental coefficient of converting brightness
to concentration.

3.5 RECOGNITION RESULTS
Numerical experiment has been staged using the test set
of 19 bioarrays: 0205140101 – 0205140119.

Any bioarray has 2 rows and 10 column of spots (see left-
hand screen in Figure 2). Hence, full number of spots to
be recognized is equal to:

19×(2×10) = 380 .

Table 1 shows results of recognition of the spots.

Table 1: Number of Undetected Spots

Bioarray

02051401#

Undetected Spots

IMCOMP MASK

Recognition time
(sec)

IMCOMP MASK

01 0 0 0.36 3.32

02 0 2 0.41 3.12

03 0 1 0.20 2.66

04 0 3 0.32 2.86

05 0 2 0.22 2.28

06 4 0 0.23 2.19

07 0 0 0.26 2.22

08 6 1 0.27 2.62

09 0 1 0.26 3.25

10 0 1 0.30 2.22

11 0 2 0.28 2.92

12 0 0 0.24 2.65

13 0 2 0.42 2.60

14 0 2 0.22 2.64

15 0 1 0.34 2.23

16 0 0 0.28 2.19

17 0 0 0.23 2.03

18 0 0 0.26 3.01

19 4 3 0.29 2.21

Spots total

380

 Total undetected

14 21

Mean time per spot

0.014 0.130

We have also compared our immunocomputing method
(IMCOMP) with another method of recognition by
"mask" (MASK). Apparently, the MASK is the most
traditional, direct and simple method of image
recognition. Usually "mask" represents a square, which
pixels form a sample of the object to be recognized within
the image. The image is scanned by the "mask" to find
any location, where the correspondence between the
"mask" and the part of the image is no less than some
threshold. The correspondence is computed by comparing
all pixels of the "mask" and the part of the image,
covered by the "mask". In our case the "mask" represents
a sample of the spot.

According to Table 1, the recognition rate of the
IMCOMP method is equal to

(1−14/380)×100% ≅ 96.3% ,

while the recognition rate of the MASK method is slightly
worse:

(1−21/380)×100% ≅ 94.5%.

Table 1 also shows that recognition by the IMCOMP
method is almost 10 times faster than by the MASK
method.

It worth noting, that all spots undetected by the IMCOMP
method are almost invisible. Figure 4 shows a typical
example of such undetected spots in the bioarray
0205140106.

As one can see from Figure 4, the last two spots in the
right-edge column of the bioarray are almost invisible. As
a more cogent argument, the profile of the right singular
vector is given below the spots. It is obvious, that the last
right-hand "paratopes" of the vector doesn't differ from
the background.

Figure 4: Example of Undetected Spots

Two other numerical experiments have been staged to
recognize the concentration of IgG in the spots. Tables 2,
3 and 4 show results of the experiments, where the
expected IgG (µg/spot) is approximately equal to 1:200
(ml/spot) of the diluted IgG (µg/ml). For example, 1.25
µg/spot corresponds to 250 µg/ml diluted, 0.63 µg/spot
corresponds to 125 µg/ml diluted, etc.

Table 2: Two Testing Bioarrays

Bioarray Size
(pixels)

Spots' Radius
(pixels)

0203070101 152×598 11

0205140101 167×450 12

Table 3: Spots of Bioarray 0203070101

Spot #
(row –

column)

Center
i-j

(pixels)

IgG
Recognized

(µµg/spot)

IgG
Expected
(µµg/spot)

1-1 25-22 1.24 1.25

1-2 24-75 0.78 1.25

1-3 24-135 0.55 1.25

1-4 25-190 0.52 0.63

1-5 24-246 0.41 0.31

1-6 23-298 0.40 0.16

1-7 24-353 0.13 0.08

1-8 21-407 0.06 0.04

1-9 23-459 0.02 0.02

1-10 22-515 0.00 0.01

2-1 132-20 1.28 1.25

2-2 132-78 0.82 1.25

2-3 133-132 0.58 1.25

2-4 132-190 0.50 0.63

2-5 133-246 0.47 0.31

2-6 131-297 0.22 0.16

2-7 130-351 0.08 0.08

2-8 131-407 0.03 0.04

2-9 138-461 0.05 0.02

2-10 131-517 0.01 0.01

It worth to admit, that recognition of the IgG
concentration in spots needs to be seriously improved.
However, it has to be noted that the expected IgG quantity
in each spot may differ from the real IgG quantity in the
spot due to the heterogeneous binding capacity of
nitrocellulose membrane. Moreover, the real IgG quantity
in the spot depends mainly from the accuracy and purity
of biological experiments, rather than from the accuracy
of our recognition method. The primary problem is to get
an objective data on the concentration of IgG in the
obtained bioarrays.

Table 4: Spots of Bioarray 0205140101

Spot #
(row –

column)

Center
i-j

(pixels)

IgG
Recognized

(µµg/ml)

IgG
Expected
(µµg/spot)

1-1 45-39 1.17 1.25

1-2 49-77 0.96 1.25

1-3 52-120 0.94 1.25

1-4 51-158 0.69 0.63

1-5 49-202 0.53 0.31

1-6 44-240 0.27 0.16

1-7 45-285 0.19 0.08

1-8 43-326 0.02 0.04

1-9 41-368 0.05 0.02

1-10 43-409 0.01 0.01

2-1 130-40 1.23 1.25

2-2 133-81 0.98 1.25

2-3 130-120 0.90 1.25

2-4 126-163 0.69 0.63

2-5 125-199 0.48 0.31

2-6 125-240 0.24 0.16

2-7 126-284 0.10 0.08

2-8 127-327 0.00 0.04

2-9 127-370 0.01 0.02

2-10 127-408 0.00 0.01

As an example, Table 5 shows optical density of the spots
of the bioarray 0203070101. These data have been
obtained by the UltraScan XL Laser Densitometer (LKB
Bromma, Sweden). However, the values of the optical
density have been read out visually, and the conversion of
the optical density d to the concentration of IgG based
also on an experimental dependence:

C(IgG) = (d − 2.1)/ 0.24 .

It worth noting, that the above results in Tables 1-4 have
been obtained by the automatic mode of the emulator. In
this mode the emulator recognizes spots in any bioarray
without any prompting by user. This mode of the
emulator corresponds to the unsupervised learning in
terms of pattern recognition (Tarakanov and Skormin,
2002).

However, we have also developed a possibility for user to
show spot to the emulator in so called training mode. This
mode corresponds to the supervised learning (training) in
terms of pattern recognition. Figure 5 shows an example
of using this mode.

Table 5: Spots of Bioarray 0203070101 with Optical
Density

Spot #
(row –

column)

Optical
Density

(d)

IgG
Computed
(µµg/spot)

IgG
Expected
(µµg/spot)

1-1 2.37 1.13 1.25

1-2 2.33 0.96 1.25

1-3 2.28 0.75 1.25

1-4 2.26 0.67 0.63

1-5 2.23 0.54 0.31

1-6 2.23 0.54 0.16

1-7 2.17 0.29 0.08

1-8 2.16 0.25 0.04

1-9 2.13 0.12 0.02

1-10 2.13 0.12 0.01

2-1 2.4 1.25 1.25

2-2 2.34 1.00 1.25

2-3 2.32 0.92 1.25

2-4 2.28 0.75 0.63

2-5 2.26 0.67 0.31

2-6 2.19 0.38 0.16

2-7 2.18 0.33 0.08

2-8 2.16 0.25 0.04

2-9 2.17 0.29 0.02

2-10 2.17 0.29 0.01

Figure 5: Example of Training the Emulator

In the training mode user points to a spot by means of the
square in the left hand screen. By changing the size and
the position of the square, user covers the spot. By such a
way, the emulator learns about the size of the spots ("non-
self") and the value of the background threshold ("self").
Numerical experiment has shown, that the emulator
detects all undetected spots in Table 1 by using the
training mode. Figure 6 shows an example of detecting all
spots of bioarray 0205140106 by using the training mode.
Note, that four spots of this bioarray haven't been detected
by using the automatic mode (see Figure 4).

Figure 6: Detection of All Spots by Training Mode:
Compare with Figure 4

It worth also noting, that the emulator detects spots, and
only spots as "non-self" codes. For example, the emulator
doesn't detect any other codes like written numbers of
biomembranes (see Figures 2, 4, 6). This property
corresponds to so-called "self-tolerance" of the immune
system.

4 DISCUSSION

4.1 ARTIFICIAL IMMUNE SYSTEM
The main goal of our work is to create an artificial
immune system as a computer controlled fragment of the
natural immune system. This paper presents results of the
first step in this direction.

We use two "immune" methods in our work: direct
immunoassay method to create bioarrays and
immunocomputing method to recognize results of
immune reactions.

As a fragment of the immune system in vitro we use
bioarrays of immunoglobulin (IgG) molecules. These
molecules are attached to the nitrocellulose membrane to
form arrays of a kind of immune memory, like the silicon
cells form arrays of computer memory. Using computer
analogy, we can also consider, that concentrations of IgG
in locations (spots) of bioarray correspond to the stored
values in cells of computer memory.

To expose the concentration of IgG we use special protein
(pG) as a testing molecular signal, like special electronic
signals are used to read out contents of computer memory.
The results of immune interactions between IgG and pG
are visualized as black spots.

Therefore, main goal of our immunocomputing method is
to recognize such spots on a surface of nitrocellulose
membrane. In other words, we need this method to
recognize the concentration of IgG in each location of
bioarray.

Inspired by principles of antibody-antigen recognition in
the natural immune system, our method solve problems of
distinguishing background ("self" codes) of nitrocellulose
membranes from spots ("non-self" codes) of bioarrays and
processing the spots to recognize concentrations of
immune molecules.

A core of our immunocomputing approach to pattern
recognition is a mathematical model of binding, or
recognizing between antibodies and antigens. According
to the biological prototype, the central notion of this
model is binding energy. We determine the binding
energy by a bilinear form over the pair of corresponding
vectors. This bilinear form is determined by a real
rectangular matrix. Thus, we obtain a convenient
quantitative measure of the extent of recognition between
the antibodies and antigens, as well as a rigorous
mathematical model of the recognition based on SVD of
real valued matrices.

An advantage of our approach consists in reducing two-
dimensional input image of biomembrane to two one-
dimensional "antibodies". This feature allows to reduce
recognition time drastically, as shown in Table 1.

Another advantage seems to be a possibility of an
effective hardware implementation of the approach in so
called immunochip (Tarakanov and Dasgupta, 2002).
Such miniature silicon device could be very useful as a
part of biochips for immune diagnostics.

4.2 BIOCHIP
We consider a biochip approach as a way to improve and
to develop our bioarray technology in general (Tarakanov
and Goncharova, 2002). To overcome the main
deficiencies of the technology, we are developing the so-
called Biochip Controlling System (BCS). The core of
this system is the presented immunocomputing software.
The development of BCS will allow to obtain the needed
accuracy and purity of biological experiments. The
function of BCS will be twofold: 1) as a liquid delivery
system of the biochip and 2) as a scan reader of the
biochip reactions.

Our BCS will use a combined method of the analysis of
the biochip reactions based on photometric and imaging
detection procedures. This method will be applied for the
analysis of optical and spatial parameters of reaction
locations on the biochip. Each location will include the
carbon particles labeled reagent system (CP system). The
photometric procedure will provide reflection measuring
of the optical density of the CP system. This procedure
will be basic for the analysis of the reactions by the BCS.
The imaging procedure will detect the spatial parameters
of the CP system. This procedure will be additional for
the BCS. The combination of these two procedures should

provide sure detection of the results of the biochip
reactions.

The BCS will contain: a) precision motorized two
coordinate stage; b) auto-manual or automated dispense
module and c) precision optical electronic detection
module.

The two coordinate stage and the dispense module will be
controlled by a PC compatible computer. We suppose to
use two types of dispense modules available in the
market: auto-manual and automated. Accordingly, our
BCS with the auto-manual dispense module could be used
in medical laboratories, while that with the automated
dispense module could be used for industry applications.

We intend to use a modification of the available
electronic pipettor as the auto-manual dispense head. This
pipettor is a multi-function instrument. It provides the
reagent's loading, diluting, mixing and dispensing with
the high accuracy by means of the embedded
microprocessor. The electronic pipettor will be moved
manually to the pipette washing sub-module and the
reagent's loading sub-module. These sub-modules will be
arranged separately.

The automated dispense module unites the dispense head,
washing sub-module and loading sub-module in one
system. All operations are performed by this dispense
module automatically.

The functioning of the BCS includes two steps. First, the
biochip will be placed on the horizontal surface of the two
coordinate stage under the dispense head. The reagents
will be dispensed on the biochip by means of its scanning
relatively to the dispense head. Second, the biochip will
be moved by means of the two coordinate stage to the
detection module and scanned by the detection head.

The digital or analog signals from the detection module
will be transmitted to the PC computer for processing
through the standard serial port or a special PCI card.

An important application of such biochip can be early
diagnostics of C-Reactive Protein as a reliable
biochemical marker suitable for detection of tissue
damage, necrosis and inflammation (Tarakanov and
Goncharova, 2002).

4.3 BIOCOMPUTER
In perspective, two steps could transform the proposed
biochip to a biomolecular computer: 1) an immunochip-
based controller, including 2) controlling of biomolecules
in the micro-wells of the biochip.

The first step is needed to replace a PC-compatible
computer by an immunochip. At this step the function of
the immunochip is twofold: 1a) control of the liquid
delivery system of the biochip and 1b) control of the
biochip reader.

The first step – the immunochip-based biochip controller
– is necessary for control reactions in the micro-wells of
the biochip. For example, the immunochip could

automate feeding the biochip with reagents and samples,
removing intermediate products, changing probes in the
process of training of the biochip, etc. Although such
functions seem complicated, it is worth noting that they
are currently under development for some microfluidic
biochips (Huang, 2002). Also at this step the immunochip
should provide a surveillance of the biochip surface,
including image processing from the biochip reader and
recognition of the results of the reactions in the micro-
wells.

The second step presents a solution to the key problem of
the biocomputer: providing control of biomolecules in the
micro-wells of the biochip by a molecular-electronic
impact computed and performed by the immunochip.
Simply put, the biocomputer could secrete biomolecules
with needed properties at appropriate locations on the
biochip. If the problem is solved, the next step could be
secretion of necessary biomolecules at appropriate times.
For example, in this way the implanted biocomputer
could control and correct natural immunity.

Therefore, the above two steps would allow us to obtain a
full-value biocomputer, where natural biomolecules
(proteins and DNAs) of the biochip collaborate with the
silicon schemes of the immunochip.

It is worth noting that the choice of the C-Reactive
Protein for one of the variants of the biochip is not
accidental. The functions of this protein are close to those
of cytokines – special proteins secreted by immune cells
to control immune response. It is known that violation in
synthesis and secretion of the cytokines could cause
several violations of immunity. Therefore, the
development of the biochip for detection of such proteins
is also a step by the biocomputer for evaluation and
control of the cytokine system in general. So, the
development of the biocomputer to control cytokine
complex in model biological micro-systems (in vitro) as a
fragment of computer controlled immune system seems
quite realistic and well-timed.

5 CONCLUSIONS
In our opinion, an important criterion of success of any
biological inspired approach in mathematics or computer
science is an effective application of the approach to the
area where it had came from. Accordingly, we have made
an attempt to apply our immunocomputing approach to
immunoassay-based diagnostic arrays. We can consider
our attempt as successful, because our method recognizes
more than 96% spots as "non-self" codes. It works almost
10 times faster than direct recognition of spots by
comparing them with a mask sample. A comparison of
our recognition method with other approaches and its
advantage had been also shown on the example of another
immunological application (Tarakanov et al., 2000).

Acknowledgments
The development of mathematical methods and software
of this work is partially supported by the European
Commission under the EU project IST-2000-26016
"Immunocomputing", and the European Office of
Aerospace R&D under the EOARD-ISTC project 2200P
"Development of Mathematical Models of Immune
Networks Intended for Information Security Assurance".

References
G. Frimel (1987). Immunological Methods. Moscow:
Medicine (in Russian).

T.V. Gupalova and A.A. Totolian (1996). Recombinant
IgG-binding protein of group G Streptococci. The Russian
Federation Patent # 2056859 (in Russian).

R. Horn and C. Johnson (1986). Matrix Analysis.
Cambridge University Press.

R.-P. Huang (2002). Detection of multiple proteins in an
antibody-based protein microarray system. J. of
Immunological Methods 255, 1-13.

V.I. Kuznetsov, V.B. Milyaev and A.O. Tarakanov
(1999). Mathematical Basis of Complex Ecological
Evaluation. St.Petersburg University Press.

D.Yu. Plaksin, M.B. Raev and E.T. Gromakovskaja
(1997). The method of stereospecific assay and the
method of the conjugate for stereospecifis assay. The
Russian Federation Patent # 20899212 (in Russian).

D.L. Stokes, G.D. Griffin and T. Vo-Dinh (2001).
Detection of E.coli using a microfluidic-based antibody
biochip detection system. Fresenius J. of Analitical
Chemistry 369: 295-301.

A. Tarakanov and D. Dasgupta (2002). An immunochip
architecture and its emulation. Proc. of the 2002
NASA/DoD Conf. on Evolvable Hardware EH-2002.
Washington, DC, USA.

A. Tarakanov and L. Goncharova (2002).
Immunocomputing to biochip and biocomputer. Proc. of
the 6th World Multiconference on Systemics, Cybernetics
and Informatics SCI-2002. Orlando, Florida, USA.

A. Tarakanov, S. Sokolova, B. Abramov and A.
Aikimbayev (2000). Immunocomputing of the natural
plague foci. Proc. of the 2000 Genetic and Evolutionary
Computation Conference (GECCO-2000), 38-41, Las
Vegas, USA.

A. Tarakanov and V. Skormin (2002). Pattern recognition
by immunocomputing. Proc. of the 2002 World Congress
on Evolutionary Computation (CEC-2002) 1, 938-943.
Honolulu, HI, USA.

A. Tarakanov, V. Skormin and S. Sokolova (2002).
Immunocomputing: Mathematical Basis and Applications.
Springer, New York (in press).

Evolving FPGA-based robot controllers using an evolutionary
algorithm

 Renato A. Krohling, Yuchao Zhou, and Andy M. Tyrrell
Bio-Inspired Eng. Lab.

Department of Electronics
University of York

Heslington,YO10 5DD
York, UK

E-mail: rk8@ohm.york.ac.uk

Abstract

In this paper, a novel evolutionary algorithm for
intrinsic hardware evolution of Field
Programmable Gate Array (FPGA) controllers is
presented. The main feature of the evolutionary
algorithm consists of a mutation operator, in
which the mutation rate is defined according to
the fitness. Experimental results on a Kephera
robot show that the algorithm proposed can
successfully navigate the robot to avoid collision
in an unknown/changing environment.

1 INTRODUCTION
Autonomous robot navigation is a very challenging
problem. Conventional approaches based on off-line
learned control policies generally do not work
appropriately when implemented in real time
environments. The development of a new research field
named Evolvable Hardware (EHW), i.e., application of
evolutionary algorithms to automatic design/
reconfiguration of electronics circuits (Zebulum et al.,
2001) presents a great potential to tackle the problem of
adaptation in unknown/changing environments. It is
proposed that autonomous robotics could benefit from the
development of EHW.
Two methodologies have been established for the design
of EHW: Extrinsic and intrinsic (Thompson, 1996),
(Miller and Thompson, 1998), (Layzell, 1998), (Haddow
and Tufte, 2000), (Hollingworth et al., 2000). In the
former case, both the evolutionary process1 as well as the
fitness evaluation of each individual (the circuit) are
simulated in software. The entire design is carried out off-
line and after the evolutionary process has completed, the
hardware is implemented in real time. In the latter case,
the evolutionary process is simulated in software but each

1 In the context of genetic algorithms the evolutionary process means the
application of the genetic operators: selection, crossover and mutation.

individual is executed in hardware in real time (on-line
evolution) (Haddow and Tufte, 2000), (Hollingworth et
al., 2000). This is possible due the development of
electronic devices such as Field Programmable Gate
Array (FPGA), which are reconfigurable devices with no
pre-determined function (Shirasuchi, 1996). Each
individual is represented as a Bitstring that is downloaded
to the chip as configuration data. This data includes a
definition of each cell’s functionality as well as the
topology of the system.
For autonomous robot navigation intrinsic evolution
presents a promising approach. A standard Genetic
Algorithm (GA) has been applied to EHW because of its
binary representation, which matches perfectly with the
configuration bits used in FPGA. Some work has been
produced to evolve on-line FPGA-based robot controllers
using genetic algorithms (Thompson, 1995), (Keymeulen
at al., 1997), (Haddow and Tufte, 1999), (Tan et al.,
2002). For on-line evolution the fitness is evaluated on
target hardware. Therefore changes in environment are
reflected immediately in the fitness evaluation.
Unfortunately on-line evolution is time consuming,
especially for robot navigation in an unknown
environment. So it is necessary to impose restriction on
the population size.
In this paper, the problem of real time adaptation of
autonomous robot navigation in changing environment is
formulated as a time-dependent optimization problem:
Find an appropriate function F (the controller) which
maps the inputs from sensors to the outputs (control
signal to the motors). To solve this problem, a novel
evolutionary algorithm to evolve a reconfigurable FPGA-
based controller is proposed.
The paper is organized as follows: in section 2 a
description of the algorithm is given; section 3 describes
the Kephera robot, the hardware and the software
platform used in the experiments. In section 4,
experimental results are presented showing the potential
of the approach, followed by conclusions in section 5.

Figure 1: Evolutionary algorithm.

2 EVOLUTIONARY ALGORITHMS
Evolutionary algorithms are inspired by principles of the
evolution theory. The basic idea is to maintain a
population of individuals (candidate solutions) which
evolve under selective pressure that favours better
solutions. The increasing interest in Evolutionary
Algorithms is because their robust and powerful adaptive
search mechanisms. For the interested reader see Fogel
(1995).
In the following, a novel evolutionary algorithm which
has similarities with evolution strategies and evolutionary
programming (Fogel, 1995) is presented: The population
is made up of two sub-populations: a memory population
M and an innovation population I. The individuals of the
innovation population undergo the operation of
replication, mutation, and selection. The algorithm is
shown in Fig.1.
Firstly, the memory population M of individuals
represented as bit strings is randomly initialized, followed
by the fitness evaluation. By applying the replication
operator with size N to the memory population M results
in the innovation population ,I which after application of
the operator mutation, results the population '.I The
innovation population is evaluated and sorted according
to the fitness in ascending order resulting in ''I . The
fittest individuals of ''I compose then the memory
population and the other individuals are discarded (die-
out); this process represents one generation. The mutation
process is carried out as follows: Individuals with high
fitness have applied to them a low mutation rate, while
individuals with low fitness are subjected to a high
mutation rate. The tuning of the mutation rate depends on
the problem, for the robot navigation a relation was

defined for the mutation rate according to the fitness,
which will be defined later. Recent work relating to
adaptive mutation rates in genetic algorithms can be
found in Thierens (2002) and references therein.

3 FPGA-BASED CONTROLLER
The implementation is based on intrinsic EHW which is
evolved using a Xilinx Virtex FPGA. The genotype of
each individual is mapped to the circuit on chip and the
fitness is evaluated on-line. The architecture of the control
system is depicted in Fig. 2. The following describes the
Kephera robot, the hardware and the software used to
carry out the experiments.

Figure 2: The control system architecture.

Figure 3: The Kephera robot.

Algorithm:
initialization of the

population (M);

evaluatation (M);

while (true)

{

replication (M); I⇒

mutation)(I ; 'I⇒

evaluation)'(I ; ''I⇒

selection)''(I ; M⇒

}

end

3.1 THE KEPHERA ROBOT
The Khepera robot used in the experiments is shown in
Fig. 3. It has eight infrared proximity sensors and 2
wheels (Michel, 1999). Each sensor can emit infrared
light and detect the reflected signals. The sensor value is
varied from 0-1023. The higher the sensor value the
closer the distance between sensor and obstacle. A value
of 400 is used here as a threshold value to convert eight
sensor input into 8 bits of information. Each wheel of the
robot is controlled by an independent DC motor. The
controller receives 2 bit information for four commands:
move forward, move backward, turn left and turn right.
The robot is controlled by the host PC through the cable
connecting between RS-232 and the robot.

3.2 THE HARDWARE
FPGA is a VLSI chip that comprises a matrix of
configurable logic blocks (CLBs) surrounded by
programmable input/output blocks (IOBs). With the
routing and logic information stored in its memory block,
the FPGA provides the desired function by the download
of the configuration Bitstream. The FPGA used in this
experiment is Xilinx’s Virtex V1000, (Xilinx Datasheet,
2001) which is connected to a PC via a PCI interface card.
In the past, most of the researchers used Xilinx XC6200
series in their experiments, because this design restricted
the connection between the outputs of logic blocks in any
random configuration, and hence the possibility of
“dangerous” configurations. However, Xilinx
discontinued to supply XC6200 and switched their
product to Virtex series. Compared with the Xilinx
XC6200, the Virtex device has multi-directional routing,
which makes it possible to connect two outputs of logic
gates together. This unsafe property prohibits researchers
using random Bitstream to configure the routing
connection of the device. One possible solution to this is
to construct a XC6200 model on Virtex chip to restrict the
routing (Hollingworth et al., 2000). This alternative way
provides a safe method to implement both logic and
routing modification on Virtex series FPGA. However,
this solution has limits due to its simple routing model
(Hollingworth, 2001). It is not easy for the input signal to
pass through the matrix of Logic Cells. Also, the XC6200
model consumes considerable resources on the device. In
order to evolve a safe and efficient controller in these
experiments, only the logic function of the robot
controller will be evolved, instead of both logic and
routing. The robot controller is evolved using 22 LUTs
(Look Up Tables) on the FPGA, with 8 input bits from the
sensors, and 2 output bits to the motors as shown in Fig.
4.
The hardware interface is the XHWIF (Xilinx Hardware
Interface), a java interface using native method to operate
the hardware platform dependent part of the interface. In
these experiments, it is used to communicate between
FPGA and host PC.

3.3 THE SOFTWARE
JBits (Xilinx, 1999) is a set of JAVA classes which
provides an Application Program Interface (API) into the
Xilinx Virtex FPGA family Bitstream. In these
experiments, this interface is used to operate on the
Bitstream generated by Xilinx Foundation (a circuit
design tool from Xilinx). It can dynamically modify the
circuit design on Virtex implementing genotype mapping.
The basic element that JBits operates on is the LUT. A
LUT has four input vector and one output. There are

1624 = information bits. For example, a true table of
one four input OR gate is:

OR 1111 1111 1111 1110 0xfffe.
The following JBits source code is used to set one LUT to
implement an OR gate.

 JBits.set(1, 1, LUT.SLICE_G, 0xfffe).

Therefore, each controller consists of 22 LUTs * 16
bits/LUT = 352 bits. So, each individual is represented by
352 information bits.

Figure 4: FPGA-based controller.

Figure 5: The experimental test environment for the
Kephera robot navigation.

4 EXPERIMENTAL RESULTS
The experimental configuration used to test the algorithm
is shown in Fig. 5.

4.1 THE FITNESS FUNCTION
The fitness measure is a very important part of an evolved
robot controller. In on-line evolution, different individuals
may not face the same environments. The wheels’ speeds
are determined by the real-time information from the
sensors. The controller must send a sequence of different
commands to the wheels in real-time. These make the
fitness measure much more difficult to evaluate (Tan et
al., 2002). To solve the problem, the fitness function used
here will not try to compare the value between input
information and output commands. It simply measures the
time and distance the robot has run before it hits an
obstacle, the longer the time and the longer the distance
the higher the fitness value. So, the fitness value can be
calculated according to a simple relation:

 fitness = distance * time/1000

The distance is the value of the position counter of the
two motors, and the time is the value of I/O period
counter. The distance of about 1000 represents a
movement of 40mm. If the robot is turning around, there
will be no increment in distance value. In order to shorten
the time, a time limit value is set to 140. An individual
will be killed when the limit is reached; even if it has not
hit the wall. At the same time, if the individual is stuck in
some position without any distance improvement, it will
be killed. The fitness limit in the experiment is 1400,
which means the robot run forward without any steering
change. In the experiments, the values of two nearby
sensors are used to judge whether the robot is too close to
the wall, and an escape time is provided to the individual
to quit from the dead zone where the last one was killed.

4.2 PARAMETERS SETUP AND RESULTS
The evaluation of each individual on-line is very time
consuming. Therefore, a small population size was used.
For the experiments, the memory population has size 16,
and the innovation population has 3=N sets of 16
individuals each. So, the total population size amounts 64
(16 for the memory population + 3*16 for the innovation
population). The memory population M is not mutated in
order to make sure that good individuals of the memory M
be not lost by the mutation operation.
In order to compare the results, a standard case was used,
where all individuals of the innovation population have 8
bits per Bitstring mutated, i.e. a mutation rate equal 0.022.
Fig. 6 shows the results for this case.
The mutation rate used, i.e., mutation tacking into account
the fitness, is calculated according to the relation: n*(1-
norm_fit), where n stands for the number of bits and
norm_fit designates the normalized fitness. Note that, in

Figure 6: All individuals of the innovation population
have equally 8 bits mutated.

Figure 7: The mutation rate for each individual of the
innovation population is calculated according to 16*(1-
norm_fit). The best individual has no bits mutated and the
worst individual has 16 bits mutated.

Figure 8: The mutation rate for each individual of the
innovation population is calculated according to 35*(1-
norm_fit). The best individual has no bits mutated and the
worst individual has 35 bits mutated.

order to obtain an integer number of bits to be mutated,
simply the integer part is taken. Two cases are considered:
For n = 16, the best individual has normalized fitness 1,
therefore no bits are mutated and the worst individual has
normalized fitness 0, therefore 16 bits are mutated which
corresponds to a mutation rate of 0.045. Fig. 7 shows the
results for this case. In the next case studied, the mutation
rate was increased. For n = 35, the worst individual had
35 bits mutated which corresponds a mutation rate of 0.1.
The result for this third case is shown in Fig. 8.

4.3 DISCUSSIONS
The experimental results present some interesting
features. In the first case as shown in Fig. 6, considering a
constant mutation rate for all individuals of the innovation
population, it can be noted that it is quite difficult to
achieve the average fitness of 1200 which was reached
after 50 generations. The fitness of the best individual
presents an oscillating behaviour. In the second case as
depicted in Fig. 7, the strategy examined consists of a
mutation rate related to the fitness, whereas the number of
mutated bits for the worst individual was 16. So, using
adaptive mutation the average fitness reached the value
1200 in less than 30 generations with the fitness of the
best individual presenting a quite stable behaviour around
the maximum value of 1400. Therefore, capable to
tracking quite well the dynamic environment. This case
presents a substantial improvement in performance
compared with the former case. In the third case studied
shown in Fig. 8, the same mutation strategy was used but
the mutation rate was increased, i.e., for the worst
individual the number of mutated bits was 35. For this
case, the behaviour of the average fitness is very
oscillatory, but even so the fitness of the best individual
presents a high value around 1400 with more fluctuation
when compared with the former case, which is due the
high mutation rate.
By means of the experiments carried out it can be
observed that the mutation operator is a very important
one to track dynamic environments as is the case of
autonomous robot navigation. It might be argued that it is
quite difficult to obtain adaptive behaviour with constant
mutation rate. With an adaptive mutation rate it was
possible to obtain good results with an intermediary
mutation rate, which is dependent of the problem on hand.
Also, the results demonstrated that a too high mutation
rate might lead to an unstable behaviour, i.e., the inability
to track change of the environment. In (Travis and Travis,
2002) it was pointed out the role of mutator clones in
adaptation of organisms to fluctuating environments. In
their experiments with different mutation rates they
noticed the influence of different mutation rate leading to
different behaviours, inclusive chaos at high mutation
rate. It may be that biological inspiration provides us with
new insights to evolve adaptive behaviour to dynamic /
unknown environments.

5 CONCLUSIONS
This paper presented a novel evolutionary algorithm to
evolving FPGA-based controller for autonomous
navigation of a mobile robot. The algorithm, in which the
mutation rate is defined according to the normalized
fitness has demonstrated suitability to tracking dynamic
environment. Experimental results on the Kephera robot
have shown that the algorithm is capable of providing
autonomous navigation in real time for collision
avoidance. In particular, the new operator mutation
proposed, has been examined for different mutation rates.
It was observed that different behaviours emerge, e.g.
good tracking of dynamic changes at intermediary
mutation rates, and the presence of fluctuations, or
instability, for high mutation rate.
Since the presented algorithm is simpler than genetic
algorithms because no crossover is used, its
implementation into an FPGA allowing the whole
evolutionary process execution in hardware is highly
desirable. Further work includes investigating the
performance of the algorithm for fault tolerance.

Acknowledgements
The authors would like to thank Dr. G. Hollingworth and
Dr. R. Canham for providing the hardware setup and
basic source code in Java.
"This project is funded by the Future and Emerging
Technologies programme (IST-FET) for the European
Community, under grant IST-2000-28027 (POETIC). The
information provided is the sole responsibility of the
authors and does not reflect the Community's opinion.
The Community is not responsible for any use that might
be made of data appearing in this publication."

References
D.B. Fogel (1995). Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence, IEEE Press,
Piscataway.
P. Haddow, and G. Tufte (1999). Evolving a robot
controller in hardware, In Proc. of the Norwegian
Computer Science Conference (NIK-99), pp. 141-150.
P. Haddow, and G. Tufte (2000). An evolvable hardware
FPGA for adaptive hardware. In Congress on
Evolutionary Computation (CEC00), pp. 553-560.
G.S. Hollingworth (2001). Fault tolerance of evolvable
hardware through diversification, Ph.D. Thesis, The
University of York, UK.
G. Hollingworth, S. Smith, and A.M. Tyrrell (2000). Safe
intrinsic evolution of virtex devices. In the second
NASA/DoD Workshop on Evolvable Hardware, IEEE
Press, pp. 195-202.
D. Keymeulen, K. Konaka, M. Iwata, et al. (1997). Robot
learning using gate level evolvable hardware, In Proc. of

the Sixth European Workshop on Learning Robots
(EWLR-6), Springer-Verlag.
P. Layzell (1998). A new research tool for intrinsic
hardware evolution. In second International Conference
on Evolvable Systems (ICES-98), Lecture Notes in
Computer Science, Springer-Verlag, pp. 47-56.
O. Michel (1999). Khepera User Manual. K-TEAM,
Version 5.02.
J. Miller, and P. Thomson (1998) Aspects of digital
evolution: Evolvability and architecture. In Fifth Intern.
Conf. on Parallel Problem Solving from Nature (PPSN-
98), Springer-Verlag.
S. Shirasuchi (1996). FPGA as a key component for
reconfigurable system, In First International Conference
on Evolvable Systems (ICES-96), Lecture Notes in
Computer Science, Springer-Verlag, pp. 23-32.
K.C.Tan, C.M. Chew, K.K. Tan, L.F. Wang, and Y. J.
Chen (2002). Autonomous robot navigation via intrinsic
evolution. In Proc. of the congress on evolutionary
computation, part of the IEEE world congress on
computational intelligence, Honolulu, USA, pp.1272-
1277.
D. Thierens (2002). Adaptive mutation rate control
schemes in genetic algorithms. In Proc. of the congress
on evolutionary computation, part of the IEEE world
congress on computational intelligence, Honolulu, USA,
pp. 980-985.
A. Thompson (1995). Evolving electronic robot
controllers that exploit hardware resources. In Proc. of the
third European Conf. on Artificial Life (ECAL-95),
Springer-Verlag, pp. 640-656.
A. Thompson (1996). An evolved circuit, intrinsic in
silicon, entwined with physics. In First International
Conference on Evolvable Systems (ICES-96), Lecture
Notes in Computer Science, Springer-Verlag, pp. 390-
405.
Xilinx, (1999). Xilinx JBits documentation. Published in
JBits. Version 2.0.1.
Xilinx datasheet, (2001). Xilinx Inc. Virtex Field

Programmable Gate Arrays data book. Version 2.5.
http://www.xilinx.com/partinfo/ds003-1.pdf
R.S. Zebulum, M.M.R. Vellasco, and M.A.C. Pacheco
(2001). Evolutionary electronics: Automatic design of
electronic circuits. CRC Press, Boca Raton, FL, USA.

Exploiting the analogy between immunology and sparse distributedmemories: a system for
lustering non-stationary data
Emma Hart and Peter Ross,Napier University, S
otlandfe.hart,p.rossg�napier.a
.ukAbstra
tThe relationship between immunologi
almemory and a
lass of asso
iative memo-ries known as sparse distributed memories(SDM) is well known. This paper proposesa new model for
lustering non-stationarydata based on a
ombination of salient fea-tures from the two metaphors. The resultingsystem embodies the important prin
iples ofboth types of memory; it is self-organising,robust, s
alable, dynami
 and
an performanomaly dete
tion. The model is �rst appliedto
lustering stati
 datasets, and is shownto outperform two other systems based onimmunologi
al prin
iples. It is then appliedto
lustering non-stationary data-sets withpromising results.1 INTRODUCTIONModern te
hnology makes it in
redibly straightfor-ward for
ompanies to gather vast amounts of data
on
erning individuals and their habits on a daily ba-sis, for example through the use of
redit
ards orsupermarket loyalty
ards. Interpreting su
h hugequantities of data, and identifying
lusters and trendswithin it is a mammoth task, espe
ially as the datamay be rapidly
hanging. Data-
lustering
an be de-�ned as \the unsupervised
lassi�
ation of patterns(observations, data items or feature ve
tors) intogroups (
lusters)" [Jain et al., 1999℄, and is performedin the hope that impli
it previously unknown and po-tentially useful knowledge
an be extra
ted from thedata. It is a large �eld in its own right, and there aremany do
umented approa
hes.However, the immune metaphor may provide a noveland alternative approa
h. Both the immune system

and a data-
lustering system have to operate in verylarge input spa
es. In the immune system, a lympho-
yte re
ognises a set of antigens, due to its impre
isemat
hing
hara
teristi
s; that set
an be
onsidered tobe equivalent to a
luster within a database. The lym-pho
yte that re
ognises all the items in a
luster thusprovides a
on
ise des
ription of the
luster itself. Thenumber of lympho
ytes present and the spe
i�
ity ofthe re
ognition pro
ess provides a me
hanism for
on-trolling the number of
lusters present, and hen
e pro-vides a method of
ontrolling how spe
i�
ally (or gen-erally) the
lusters are des
ribed. The fa
t that re
og-nition is impre
ise is important | data in a databaseis likely to
ontain mu
h noise and redundant infor-mation, therefore some kind of impre
ise re
ognitionme
hanism will be essential.The natural immune system
an rea
t to unseenpathogens either by produ
ing new lympho
ytes us-ing its inbuilt diversity generating me
hanisms or byadapting existing lympho
ytes via mutation me
h-anisms. Similarly, when new data arrives in thedatabase, the
entres and sizes of the
lusters may needto move and adapt in order to re
ognise the new data.New
luster
entres may be
reated and old ones maydisappear over the
ourse of time, the key point beingthat the system
an respond dynami
ally to the stateof the database at a given moment in time.The natural immune system is very eÆ
ient at re
og-nising the sudden appearan
e of harmful invaders; adata-
lustering system should be able to re
ognise theappearan
e of anomalous data in the database. Thisfeature would automati
ally result from an immunebased model however | if a data-item is not re
og-nised by any
luster it would result in the system hav-ing to
reate a new lympho
yte. External observationthat this has o

urred would signify that perhaps thatthe data is non-representative of the general patternsand therefore triggering some warning. Imagine for ex-ample attempting to
luster data
olle
ted by a
redit-

ard
ompany relating to
ard usage. The
ompany isinterested in
lustering the data to identify patternsin
ard usage, but would also like to dete
t fraudulent
ard-usage. If a newly presented data-item does notbelong to an already established
luster, it
ould iden-tify an attempt at fraudulent usage of the
ard, whi
hfurther human examination
ould verify. Finally, thedistributed nature of the immune system ar
hite
tureis attra
tive, given the fa
t that very large datasetsare also likely to be distributed.
2 Related WorkSeveral of the features just des
ribed have been mod-elled in a number of very di�erent implementations ofarti�
ial immune systems and applied to the problemof
lustering data. For example, Potter et al. de-s
ribe a model of an AIS that uses a
oevolutionarygeneti
 algorithm (GA) to evolve antibodies to
lus-ter arti�
ial data sets [Potter and De Jong, 2000℄ andCongress voting re
ords [Potter and De Jong, 1998℄;Forrest et. al [Forrest et al., 1993℄ des
ribe a GAthat uses emergent �tness sharing to �nd pat-terns; Hunt et al. [Hunt et al., 1999℄ des
ribe asystem named Jisys whi
h was used to
lusterdata for use in mortgage fraud dete
tion and Tim-mis [Timmis et al., 2000, Timmis and Neal, 2001℄ hasadapted this system to su

essfully
luster the wellknown but very small ben
hmark data set
ontain-ing iris petal sizes. Both the Timmis and Hunt workused a model based on
onne
ted networks of anti-bodies, in whi
h nodes whi
h are
onne
ted re
ognisesimilar patterns. A similar approa
h was adopted by[De Castro and Von Zuben, 2000℄ who present a net-work model for data
lustering and �ltering redundantdata. So far, none of these methods have addressed thequestion of
lustering data in time-varying databases.Although there is no intrinsi
 barrier to extending ei-ther the
oevolutionary or network models to deal withnon-stationary data, both methods present obsta
les.In the network model, there are high
omputationaloverheads asso
iated with re-organising large networksas the data
hanges, whi
h in
rease as the size of thedatabase in
reases also. It is also un
lear whether the
oevolutionary method of evolving
lusters is able to
ope with extremely large databases, parti
ularly asthe antibodies
ompete to ex
lusively re
ognise data,whereas in reality
lusters may overlap.

3 Exploiting the
orresponden
ebetween immunology and SDMSmith et. al [Smith et al., 1999℄ have shown that theimmune system
an be
onsidered to be representa-tive of the same
lass of memories as Kanerva's SparseDistributed memory, [Kanerva, 1988℄. The SDM is a
ontent-addressable memory whi
h was originally pro-posed as an eÆ
ient method for storing a very largenumber of large binary data patterns using a verysmall number of physi
al data addresses, in a mannerwhi
h allows a

urate re
all of all the data. An SDM is
omposed of a set of physi
al or hard lo
ations, ea
h ofwhi
h re
ognises data within a spe
i�ed distan
e of it-self | this distan
e is known as the re
ognition radiusof the lo
ation. Ea
h lo
ation also has an asso
iatedset of
ounters, one for ea
h bit in its length, whi
h ituses to `vote' on whether a bit re
alled from the mem-ory should be set to 1 or 0. An item of data is stored inthe memory by distributing it to every lo
ation whi
hre
ognises it | if re
ognition o

urs, then the
ountersat the re
ognising lo
ations are updated by either in-
rementing the
ounter by 1 if the bit being stored is 1,or de
rementing the
ounter by 1 if the bit being storedis 0. To re
all data from the memory, all lo
ationswhi
h re
ognise an address from whi
h re
all is beingattempted vote by summing their
ounters at ea
h bitposition; a positive sum results in the re
alled bit be-ing set to 1, a negative sum in the bit being set to 0.This results in a memory whi
h is parti
ularly robustto noisy data due to its distributed nature and inexa
tmethod of storing data. These properties make it anideal
andidate for addressing
lustering problems inlarge databases. For example, we
an
onsider ea
hphysi
al lo
ation along with its re
ognition radius tode�ne a
luster of data; the lo
ation itself
an be
on-sidered to be a
on
ise representation or des
ription ofthat
luster, and the re
ognition radius spe
i�es thesize of the
luster. Clusters
an overlap | indeed, itis this pre
isely this property whi
h allows all data tobe re
ognised with high pre
ision whilst maintaininga relatively low number of
lusters. If no overlap isallowed, then a large number of lo
ations are requiredto
luster the data, the system be
omes overly spe-
i�
, and hen
e general trends in the data are lost. Inthe form des
ribed, the SDM is also stati
 and in
ex-ible, however given its powerful and eÆ
ient storageand re
ognition
apa
ities, it is fruitful to adapt it tooperate in a dynami
 environment.Previous work by the authors [Hart and Ross, 2001℄presented an immune system model for
lustering mov-ing datasets based on an SDM that was dynami
,adaptable and
apable of tra
king
hanges in large vol-

umes of data. In this model, an antigen is equivalentto a pie
e of data, an antibody to a des
ription of a
luster, and the ball of stimulation of the antibodyde�nes the size of the
luster. The basi
 propositionof the model was to use a
oevolutionary GA, run-ning
ontinuously, to �nd qui
kly the set of antibod-ies (and their
orresponding balls of stimulation) thatbest
luster the data
urrently visible to the system.Whilst some su
esss was observed, the model su�eredfrom three drawba
ks; namely, that the evolved SDMsfailed to re
ognise some antigen altogether, that
or-re
tly setting the re
ognition radii of ea
h
entre is ex-tremely diÆ
ult, and that the algorithm is relativelyslow, due to the nature of the �tness fun
tion. Thispaper presents a new model, the self-organising SDMor SOSDM, whi
h
losely models the self-organisingnature of the biologi
al immune system, one of its fun-damental
hara
teristi
s. SOSDM views immunolog-i
al memory as a truly self-organising system. Ini-tially randomly pla
ed hard lo
ations self-organise inorder that they be
ome distributed throughout theinput data spa
e in a manner whi
h re
e
ts the in-put data distribution. This seems an entirely logi-
al step | the immune system itself is self-organising,whilst viewed from the
omputational angle, there isan abundan
e of literature des
ribing algorithms forself-organising systems, the
lassi
 example of
oursebeing the Kohonen network, [Kohonen, 1982℄. Fur-thermore, a number of data-
lustering algorithms relyon self-organising prin
iples, and the existing immune-network models that perform data
lustering arealso self-organising,[De Castro and Von Zuben, 2000,Timmis et al., 2000℄ and [Timmis et al., 1999℄
om-pares an AIS to a Kohonen network.Despite its similarity to immunologi
al memory,the SDM in its original form is unsuitable for
lustering data, for reasons des
ribed in detail in[Hart and Ross, 2001℄. However, [Hely et al., 1997℄have proposed an alternative model of an SDM whi
hwas developed in order to handle non-random inputdata more satisfa
torily then Kanerva's original sys-tem. A

ording to [Hely et al., 1997℄,\the SDM signalmodel retains the essential
hara
teristi
s of the orig-inal SDM whilst providing the memory with a greaters
ope for plasti
ity and self-evolution. By removingmany of the problemati
 features of the original SDMthe new model is not as dependent upon a priori in-put values.". In Hely's model, the storage lo
ationsthat make up the �nal memory are not known fromthe start. Initially lo
ations are
reated until there isan ex
ess of storage lo
ations whi
h then
ompete foravailable signal (i.e. data). Storage lo
ations re
eiv-ing little or no signal are removed. Lo
ations whi
h

survive are
hosen for the total amount of signal theyre
eive. The re
ognition radius of the original SDM isrepla
ed by a new parameter whi
h de
reases the valueof the signal as it spreads out. Lo
ations have real val-ued
ounters to store a
opy of the data weighted bythe strength of signal they re
eive. The signal does notpropagate after it falls below a minimum strength. Im-portantly, in the
ontext of data-
lustering, this modeldoes not rely on a single parameter de�ning a re
og-nition radius, and furthermore does not depend onlo
ations being randomly distributed throughout theinput spa
e;
learly, the input data in a database isnot random. Our new model SOSDM, borrows fromthe underlying philosophy of the Hely signal model ofdistributing data, but modi�es the detail somewhat.Data is distributed to many lo
ations with de
reasingstrength, but we also take inspiration from the algo-rithm used by [Potter and De Jong, 2000℄ in that
en-tres
ompete for data based on their aÆnity for thedata. In order
ope with the demands of
lusteringnon-sationary data whi
h requires the memory to be
exible in terms of the number of
entres present atany given time, nodes are added and deleted only asne
essary in areas of the input spa
e that are misrep-resented given the
urrent state of the data.4 Implementation of SOSDMPseudo-
ode outling the SOSDM algorithm is given in�gure 1. The basi
 prin
iples are as follows: Firstly,input data patterns (or a random subset of the data-set) are distributed to a subset of the hard lo
ations,based on the aÆnity of ea
h hard lo
ation for the data-item in a bat
h pro
ess. This results in the
ounters ofthe subset of lo
ations being updated, a

ording to thestrength of ea
h signal re
eived. After all signals havebeen propagated, the a

umulated error at ea
h lo
a-tion is
al
ulated. The error is equivalent to the sumof the distan
es between ea
h node and any data itre
ognises, weighted by the signal strength. The valueof the error is then used to allow the hard lo
ationsto self-organise | lo
ations gravitate towards areas ofthe spa
e in whi
h they re
ognise data, the distan
eand dire
tion of the movement determined by the a
-
umulated error. Ea
h of these steps is now des
ribedin greater detail.4.1 Distributing the DataData is distributed through the SDM a

ording to theaÆnity A of ea
h
entre
 for an input signal a. Thisis de�ned simply as Hamming Distan
e between theinput data and the address of the
entre
 (equation1).

1. begin with a �xed number of
entres N , with randomly initialised positions and
ounters set to 0.2. present a subset s(s � N) of the data-set visible at time t to the SOSDM3. distribute the data in the s to ea
h
entre in the SOSDM, with a strength pro-portional to the aÆnity of the
entre for the data� update the
ounters at ea
h
entre a

ording to the strength of signal re-
eived�
ompute the a

umulated error at ea
h
entre4. update
entre positions | the distan
e and dire
tion of the move is determinedby the total a

umulated error at the
entre5. update
entre
ounters6. add or delete nodes from the memory if ne
essary7. go ba
k to step 2 Figure 1: The SOSDM algorithmA(
i; a) = j=LXj=1 � 1 if V (
j) = aj0 otherwise (1)The aÆnity of ea
h of the N
entres for the inputdata is
al
ulated. Following this, the
entre with thehighest aÆnity for the antigen a, denoted by A�
anbe determined:A� = max(A(
1; a); ::::;A(
N ; a)) (2)This value A� is then used to determine how mu
h ofa signal is distributed to ea
h
entre. Signal is dis-tributed a

ording to its strength, where the strengthof a signal at
entre
i is proportional to the ratio ofthe aÆnity of that
entre for the signal, A(
i; a) to A�.A further parameter known as the signal-threshold tis introdu
ed, su
h that (0 � t � 1). Signal is onlydistributed to those
entres in whi
h the strength ofsignal is greater than this threshold. This is shown inequation 3.S(
; a) = � AA� if S(
; a) > t0 otherwise (3)Distributing a signal to a
entre implies updating the
ounters at that
entre. The
ounter C(
ij) for ea
h bitj at ea
h
entre
i is updated a

ording to equation 4,where
 is equal to 1 if V (
ij)1 and to -1 if V (
ij) = 0.

C(
ij) = C(
ij) +
S(
; a) (4)As signal is distributed in this manner, a running totalof the a

umulated signal re
eived at ea
h
entre isin
remented, as shown in equation 5:8
 : R(
) = R(
) + S(
; a) (5)4.2 Cal
ulating the Error at Ea
h NodeThe self-organising me
hanism by whi
h
entres movearound the SDM is based on a
al
ulation of the totalerror a

umulated at ea
h
entre after all input signalshave been distributed to the SDM. Error is
al
ulatedin the following manner; �rstly, ea
h time a signal isstored at some
entre
, the error at ea
h of the jbit positions for the address of that
entre is updateda

ording to equation 6. The error at ea
h bit positionis this e�e
tively a measure of the di�eren
e betweenthe desired value of the
entre address at position j asgiven by the value of the antigen at position j and thea
tual value of the
entre address, V (
ij).E(
ij) = E(
ij) + S(
i; a)(aj � V (
ij)) (6)Movement of
entres only o

urs after all data hasbeen presented to the SDM, whi
h allows the totalaverage error at ea
h
entre, E , to be
al
ulated, a
-
ording to equation 7. Note that this will always have

a value lying between -1 and 1.E(
ij) = E(
ij)=R(
i) (7)4.3 Updating the nodes position and
ountersOn
e all data has been presented, self-organisation ofthe
entres
an take pla
e. Thus, as shown identi�edin steps 4 and 5 of the SOSDM algorithm in �gure1, the address of ea
h
entre is modi�ed as the
entresmove to parts of the input spa
e more representative ofthe signal they are re
eiving. The
ounters asso
iatedwith a
entre also move, however they too are modi�edas the physi
al lo
ations of the
entres move to re
e
tthe new position of the
entre.The probability with whi
h the position and the
ounter of ea
h bit j in a
entre
i are moved is de-�ned a

ording to the absolute value of the averageerror E(
ij). If the value of jE(
ij)j is greater than0.5, then this value determines the probability withwhi
h an address bit is
ipped and its
ounter up-dated. (The introdu
tion of the value of 0.5 ensuresthat the system will eventually stabilize given a stati
data set and prevents random movements). Thus, ifE(
ij) < 0, then V (
ij)) 0, and if E(
ij) > 0, thenV (
ij)) 1:. Equation 8 summarises the e�e
t on the
ounters for ea
h bit j in ea
h
entre
i for all
entresin whi
h jE(
ij)j > 0:5. A new parameter is introdu
ed| the in
uen
e-
ounter, I. This parameter allows theamount by whi
h the
ounters are adjusted to be ex-pli
itly
ontrolled.C(
ij)) C(
ij)� �1 + �I � E(
ij)�� (8)Thus, the e�e
t on a
ounter is that it is in
reasedor de
reased by a per
entage of its original value, theamount of whi
h is proportional to the total error a
-
umulated at the node. The e�e
t on the address of bitj is that it is
ipped, with a probability proportionalto the average error a

umulated at that address lo
a-tion.In summary, the key features of the SOSDM algorithminvolve distributing a sample of data to the system,followed by allowing the system to self-organise, in amanner dependent on the average error a

umulatedat ea
h
entre. The algorithm is iterated until it sta-bilises (given a stati
 data set). Note that when usingSOSDM there is no need to
al
ulate the mean re-
all a

ura
y of the system at ea
h iteration, as withCOSDM. The value of this parameter does not feed-ba
k into the algorithm and has no bearing on its per-

forman
e. However, in order for the observer to evalu-ate the performan
e of SOSDM, this quantity must be
al
ulated. The method by whi
h this is done is nowoutlined.4.4 Re
alling Data from the SOSDMThe quality of the SOSDM de�ned by this model ismeasured by the a

ura
y with whi
h data stored inthe memory
an subsequently be re
alled.When attempting to re
all an antigen a, �rst the anti-gen that is retrieved from the memory a0 is
al
ulated,and then this is
ompared to the desired antigen, i.e.that whi
h was originally stored in the memory, a. Thepro
ess is as follows:� Cal
ulate the subset of
entres n0 for whi
h thesignal strength S(
i; a) > t� Sum the
ounters of ea
h member of the subset n0at ea
h of the j bit positions to give �j(a). Thevalue of ea
h
ounter C(
ij) is weighted by thestrength S(
i; a) of the signal during the summa-tion pro
ess, as shown in equation 9.�j = Xi2n0 C(
ij ; a)� S(
i; a) (9)Then, as in the original SDM, any bit where �j > 0has a 1 at that lo
ation in the re
alled data, and anybit where sigmaj < 0 has a 0 at that lo
ation inthe re
alled data. Thus, the a
tual re
alled antigenis
al
ulated,
ompared to the desired antigen, andthe mat
h-s
ore M between the a
tual and desiredantigen derived. This is simply the number of bit po-sitions in whi
h the re
alled data and original datahave identi
al values. The mat
h-s
ore is then used to
al
ulate the mean re
all a

ura
y, r, whi
h is a quan-titative measure of the performan
e of the system, andis given in equation 10.Mean re
all a

ura
y r = 1N i=NXi=1 M(a0i; ai) (10)This quantity thus measures the number of mat
hingbits between a re
alled antigen and the original storedantigen, and hen
e has a value between 0 and L, whereL is the length of the antigen.4.5 Experimental Set-upExperiments were �rst performed using stati
datasets, using the same binary data-sets des
ribed

by Potter in [Potter and De Jong, 2000℄ and in[Hart and Ross, 2001℄. There are 3 datasets, the �rst
ontaining 2
lusters, the se
ond 4
lusters, and thethird 8
lusters, identi�ed as half-s
hemas, quarter-s
hemas, and eighth-s
hemas respe
tively. The half-s
hema set is generated in equal proportion from 2s
hemas | in s
hema-1, the �rst L=2 bits of thes
hema are set to 1, the remainder to wild-
ards, ins
hema-2, the latter L=2 bits are set to 1, with the �rstL=2 bits set to wild-
ards. Similary, quarter-s
hemadata-sets are generated in equal proportion from 4su
h s
hemas, and eighth-s
hema data-sets from 8 su
hs
hemas. In ea
h
ase, the results
an be
omparedagainst the mat
h that would be obtained by the bestpossible single string generalist, whi
h would always
onsist of a string
ontaining all 1's, thus resultingin a mat
h-s
ore of (L=x) + (L�(L=x)2), where x is2,4 or 8 when using half, quarter or eighth s
hemadatasets respe
tively. The number of antigen in ea
hdataset is varied from 5 to 500, in steps of 50, and thelength of ea
h antigen string in ea
h
ase is 64. Un-less stated otherwise, ea
h experiment is repeated 10times, and the SOSDM algorithm is applied for 200iterations. The quality of the algorithm is measuredby the mean re
alled a

ura
y, (see equation 10). Thenumber of
entres in ea
h experiment was �xed beforethe experiment began, and remained stati
 through-out ea
h experiment, as the number of
lusters inea
h dataset is known a priori. Results are
omparedwith those of the
o-evolutionary immune algorithmgiven in [Potter and De Jong, 2000℄ | this system isreferred to as CE-POTTER in the remainder of thispaper.4.6 Comparison of SOSDM Performan
e tothat of CE-POTTERInitial experiments were performed with t = 1:0 andI = 1:0. Thus, data is distributed to all
entres withA = A� and to no others. (This is in dire
t
om-parison to the Potter approa
h in whi
h data is onlydistributed to a single
entre, with ties broken by ageof
entre). The setting for I also ensures that
ountersare adjusted maximally. The best re
all-a

ura
y ob-tained in ea
h of 10 experiments is re
orded, and theresults averaged. Figure 2 shows a plot of the results|
learly SOSDM outperforms CE-POTTER for allsizes of antigen dataset and regardless of the numberof
lusters. T-tests show that the mean re
alled a

u-ra
y obtained using SOSDM is statisti
ally signi�
antin every
ase when
ompared to the identi
al experi-ment using CE-POTTER.Examining the results in more detail shows that as the

number of antigen in
reases, the number of
entres re-
eiving the maximum strength of a data-item in
reasesin all experiments. In small datasets, it is relativelystraightforward for the
entres to distinguish betweenea
h
luster. For very large datasets however, eventhough the data items nominally belong to separate
lusters, there is likely to be a large overlap betweenitems in ea
h
luster, espe
ially as the length of the de-�ned se
tion
hara
terising ea
h
luster de
reases, andthe number of antigens generated from that s
hema in-
reases. Thus, the memory must generalise in order toa

urately re
all the large number of data-item, de-spite the fa
t that items nominally belong to a �niteset of
lusters | this is a
hieved by allowing
lustersto overlap. This e�e
t is mu
h more
learly apparentin the quarter-s
hema and eighth-s
hema than it is forthose using half-s
hema.4.7 Performan
e vs Length of AntigenA se
ond series of experiments used datasets generatedfrom quarter-s
hema, this time of �xed size N=200antigens. The length of the antigen L in ea
h datasetwas varied from 40 to 1000 in steps of 40. The bestre
alled a

ura
y r was measured at the end of 200iterations of SOSDM, and the results averaged over 50trials. Figure 3 shows the results of these experiments;a
omparison is made to the mean re
all a

ura
y thatwould be expe
ted using the best possible single stringgeneralist for ea
h value of L. The �gure shows a dire
t
orresponden
e between r and L | again, for everyvalue of L , the value of r ex
eeds that expe
ted usingthe single string generalist and this di�eren
e in
reasesas L in
reases.4.8 Performan
e of SOSDM vs Size ofDatasetExperiments were performed using datasets rangingin size from 500 antigen to 10,000 antigen in stepsof 500. All datasets were generated using 4 quarter-s
hema, and the mean re
alled a

ura
y of the entiredataset measured at the end of 200 iterations of the al-gorithm. Experiments were repeated 50 times in ea
h
ase. Figure 4 shows the performan
e of SOSDM vsthe size of of the dataset, with errorbars showing theminimum and maximum a

ura
y over the 50 exper-iments. Note that although there is a slight down-wards trend in mean re
alled a

ura
y r the value ofr is always signi�
antly greater than the result thatwould be obtained using the best possible string gen-eralist, whi
h would give r = 40. T-tests show whatthere is a signi�
ant di�eren
e (p > 0:99) in the valueof r obtained for N = 1000 and that obtained when

Potter−half−schema
SOSDM−half−schema

Potter−quarter−schema

SOSDM−quarter−schema

SOSDM−eighth−schema

Potter−eighth−schema
A

ve
ra

ge
 F

itn
es

s

Number of antigens in data set

40

41

42

43

44

45

46

47

48

49

50

51

50 100 150 200 250 300 350 400 450 500Figure 2: Comparison of Potter Algorithm to SOSDM for all experiments
Expected recall accuracy for

best string generalist

Length of antigens

M
ea

n
re

ca
lle

d
ac

cu
ra

cy

SOSDM

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 9001000Figure 3: The �gure shows how mean re
alled a

ura
y r varies with the length of antigen L in a dataset of �xedsize 200

M
ea

n
re

ca
lle

d
ac

cu
ra

cy

Size of antigen dataset

41.5

42

42.5

43

43.5

1000 2000 3000 4000 5000 6000 7000 8000 900010000Figure 4: The �gure shows how mean re
alled a

ura
y r varies with the size of the antigen dataset N

Data No. Centres Average No. Average Re
all(original data) Centres using SOSDM A

ura
yhalf-s
hema 2 2.29 49.41quarter-s
hema 4 6.75 44.77eighth-s
hema 8 10.06 42.40Table 1: The table shows the average number of
entres required and
orresponding a

ura
y of re
all for
lustering data-sets with a dynami
 SOSDM algorithmN = 10; 000.5 Non-stationary DataIn order for SOSDM to operate in a truly unsupervisedmanner in a non-stationary environment, SOSDMshould be able to
reate and delete
entres in responseto the data it is exposed to, as generally the numberof
entres required will not be known a priori. Themodel must also
ontain a me
hanism for both addingand removing
entres as appropriate, depedning on the
urrent state of the environment. In order to add
en-tres to the model, a me
hanism is suggested in whi
hstagnation of the system is is dete
ted not in respe
tto re
all a

ura
y but in terms of movement of
en-tres | if no movement of any
entre has happenedover a �xed number of generations s (the stagnationthreshold) then a
entre is added. The new
entre isgenerated in a random position with its
ounters ini-tialised to zeros. To delete
entres that have be
omeobselete, the total strength of signal S re
eived by anode is
ompared to the total signal that the nodehas been exposed to; if S is less than some prede�nedper
entage d (the deletion threshold), then the
entreis deleted. However, a
entre is allowed to exist forat least n epo
hs after
reation in order to give it anopportunity to survive. Furthermore, a
aveat is ap-plied that if a
entre uniquely re
ognises at least oneantigen, then it is allowed to remain.6 ResultsA series of experiments was performed (see[Hart, 2002℄ for details) in whi
h SOSDM wasused to try and
luster the half-s
hema, quarter-s
hema and eighth-s
hema data used throughoutthis thesis. Ea
h dataset
ontained 200 antigens,and in ea
h experiment SOSDM was initialised with2
entres. The stagnation threshold s is set to 10iterations, and the deletion threshold d was varied asdes
ribed below. At the end of ea
h experiment, thebest re
all a

ura
y and the
orresponding number of
entres in the system are re
orded. Ea
h experiment

was run 100 times and the results averaged. Initialexperiments using the half-s
hema data showed thatthe a
tual value of the deletion threshold parameterd was unimportant in terms of the re
all a

ura
y thesystem a
hieved and the average number of
entresused, however it had a large e�e
t on the numberof times
entres were deleted from the system andthen subsequently re-added, hen
e a
areful
hoi
eis ne
essary in order to make the system eÆ
ient.Results to be reported elsewhere
learly indi
ate thatfor this data, a large in
rease in the instability of thesystem o

urs when the deletion threshold rises above0:3. However, for all values of d, the system alwaysprodu
es its best results when the number of
entresis on average 2, as desired. Experiments with thequarter-s
hema data and eighth-s
hema data wereperformed with d set to 0.25. The average numberof
entres required to give the best re
all is shown intable 1.The number of
lusters in ea
h
ase is sensible | al-though the original data-sets were
reated using 2,4and 8 s
hemas and hen
e nominally
ontain the
orre-sponding number of
lusters, these
lusters are some-what arbitrary. Re
all that the data is
reated by ran-domly �lling in wild-
ards in a set of s
hemas, there-fore the formation of other
lusters is likely, espe
iallywhen the de�ned length of the s
hemas is short. Thus,with the half-s
hema data, the data is most a

uratelyre
alled using 2 or 3
lusters,
losely mat
hing the orig-inal s
hemas, whereas in the eighth-s
hema data, morea

urate re
all is gained by using more than the 8
lus-ters that the data was generated from.7 Results with Non-StationaryDatasetsThe experiments des
ribed in [Hart and Ross, 2001℄using the
oevolutionary immune model were repeatedwith SOSDM. The experiments examined the perfor-man
e of SOSDM on a series of datasets in whi
h new
lusters are introdu
ed at regular time-intervals, re-pla
ing random
lusters in the original data-sets, usingthe following pro
edure:

Iterations

A
ve

ra
ge

 r
ec

al
l a

cc
ur

ac
y

*
*

*

*

* *

36

36.5

37

37.5

38

38.5

39

39.5

40

40.5

41

41.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000Figure 5: The �gure shows how the re
all a

ura
y of the SOSDM
hanges following a number of antigen updatesin whi
h entirely new
lusters are introdu
ed. The points marked * indi
ate the iteration at whi
h the antigenswere updated. The data
ontains 5
lusters, ea
h
ontaining 40 antigens. One
luster is repla
ed at ea
h update.The system is
ontinually exposed to a set of 100 anti-gen. The antigen are generated from s s
hemas. Ea
hs
hema
onsists of a string of 64 bits, in whi
h

on-tiguous bits are set to 1, with the start position ofthe
 bits randomly
hosen. All remaining bit po-sitions
ontain wild-
ards. Antigen are generated inequal proportion from ea
h s
hema by randomly re-pla
ing wild-
ards with either 0 or 1. In order to gen-erate non-stationary data, the following pro
edure isfollowed. 100 antigens are generated at time t = 0from s s
hema. Every U time-steps, g s
hemas are
hosen at random and repla
ed by g new randomlygenerated s
hema. New antigens are generated fromthe new s
hema and repla
e those antigens generatedfrom the s
hema being repla
ed.9 sets of experiments were performed, in whi
h datasets were generated using 2; 5; 10 s
hemas of length 64bits, and the de�ned se
tion of ea
h s
hema was setto either 8,16 or 32 bits. For ea
h dataset
ontaining

lusters, experiments tested the ability of SOSDMto respond to repla
ing 1; 2; ::;

lusters at ea
h up-date, resulting in a total of 51 experiments. Figure5 shows a typi
al result of one of the experiments inwhi
h the dataset was generated from 5 s
hemas ea
hwith 8 de�ned bits, and in whi
h
luster was repla
edat ea
h update. It is diÆ
ult to observe
lear trendsin the results by varying either the number of
lus-ters in the dataset or the number of de�ned bits ina
luster. However, it is observed that in all but oneof the experiments, the average time lag for the sys-tem to return to its previous best level of �tness in-
reases as the number of updates in one experiment

in
reases. Also, it be
omes in
reasingly diÆ
ult forthe system to respond as the number of
lusters beingrepla
ed in
reases. However, these experiments rep-resent an extreme test of the system | in real life,entire new
lusters are unlikely to suddenly appear atthe same time as other
lusters suddenly disappear,rather a more gradual pro
ess would o

ur. Methodsby whi
h the model
ould be improved in this respe
tare
urrently being investigated.8 Con
lusionThis paper has presented a new model for
lusteringboth stati
 and non-stati
 data that is based on a
om-bination of the ideas from both immunology and sparsedistributed memories. The model outperforms previ-ously published work on stati
 data-sets, and further-more, the results are shown to be s
alable with thesize of the data-set and with the length of the antigendata. An appealing feature of the model is the smallnumber of parameters to be set | there are just twoparameters and as yet unpublished work has shownthat �nding suitable settings for them is trivial. Whentested with non-stationary datasets, good peforman
eis observed | although performan
e degrades as thenumber of
lusters repla
ed in
reases, the mean re
alla

ura
y of data from the
lusters remains high. Giventhe short
omputational times required to a
hieve re-sults, a possible solution to this problem would be tosimply restart the system from s
rat
h periodi
ally.However, methods to
ontrol the rate at whi
h thesystem
an 'forget' data, more
onsistent with the im-

mune metaphor are
urrently being investigated.Referen
es[De Castro and Von Zuben, 2000℄ De Castro, L. andVon Zuben, F. (2000). An evolutionary immune net-work for data
lustering. In Pro
eedings of the IEEEBrazilian Symposium on Arti�
ial Neural Networks,pages 84{89.[Forrest et al., 1993℄ Forrest, S., Javornik, B., Smith,R., and Perelson, A. (1993). Using geneti
 algo-rithms to explore pattern re
ognition in the immunesystem. Evolutionary Computation, 1(3):191{211.[Hart, 2002℄ Hart, E. (2002). Immunology as ametaphor for
omputational information pro
essing:Fa
t or �
tion. PhD thesis, University of Edinburgh,submitted July 2002.[Hart and Ross, 2001℄ Hart, E. and Ross, P. (2001).Clustering moving data with a modi�ed immune al-gorithm. In Boers, E. et al., editor, Appli
ationsof Evolutionary Computing, EvoWorkshops 2001,number 2037 in LNCS, pages 394{404. Springer.[Hely et al., 1997℄ Hely, T., Willshaw, D., and Hayes,G. (1997). A new approa
h to kanerva's sparse dis-tributed memory. In IEEE Transa
tions on NeuralNetworks, pages 101{105.[Hunt et al., 1999℄ Hunt, J., Timmis, J., Cooke, D.,Neal, M., and King, C. (1999). Arti�
ial ImmuneSystems and Their Appli
ations,
hapter Jisys: TheDevelopment on An Immune System for Real WorldAppli
ations, pages 157{184. Springer-Verlag.[Jain et al., 1999℄ Jain, A., Murty, M., and Flynn, P.(1999). Data
lustering: A review. ACM ComputingSurveys, 31(3):264{323.[Kanerva, 1988℄ Kanerva, P. (1988). Sparse Dis-tributed Memory. MIT Press,Cambridge,MA.[Kohonen, 1982℄ Kohonen, T. (1982). Self-organizingformation of topologi
ally
orre
t feature maps. Bi-ologi
al Cyberneti
s, 43(1):59{69.[Potter and De Jong, 1998℄ Potter, M. and De Jong,K. (1998). The
oevolution of antibodies for
on
eptlearning. In Parallel Problem Solving From Nature- PPSN V, pages 530{540. Springer-Verlag.[Potter and De Jong, 2000℄ Potter, M. and De Jong,K. (2000). Cooperative
oevolution: An ar
hite
-ture for evolving
oadapted sub
omponents. Evolu-tionary Computation, 8(1):1{29.

[Smith et al., 1999℄ Smith, D., Forrest, S., and Perel-son, A. (1999). Arti�
ial Immune Systems andTheir Appli
ations,
hapter Immunologi
al Memoryis Asso
iative, pages 105{112. Springer-Verlag.[Timmis and Neal, 2001℄ Timmis, J. and Neal, M.(2001). A resour
e limited arti�
ial immune sys-tem for data analysis. Knowledge Based Systems,14(3-4):121{130.[Timmis et al., 1999℄ Timmis, J., Neal, M., and Hunt,J. (1999). Data analysis using arti�
ial immunesystems,
luster analysis and kohonen networks:Some
omparisons. In Pro
eedings of the Interna-tional Conferen
e on Systems, Man and Cybernet-i
s, pages 922{927. IEEE.[Timmis et al., 2000℄ Timmis, J., Neal, M., and Hunt,J. (2000). An arti�
ial immune system for data anal-ysis. Biosystems, 55(1/3):143{150.

Immune Memory in the Dynamic Clonal Selection Algorithm

J. Kim

Department of Computer Science
King’s College London

Strand
London WC2R 2LS

jungwon@dcs.kcl.ac.uk

P. J. Bentley

Department of Computer Science
University College London

Gower Street
London WC1E 6BT

P.Bentley@cs.ucl.ac.uk

Abstract

The dynamic clonal selection algorithm
(DynamiCS) was created to tackle the difficulties
of anomaly detection in continuously changing
environments (Kim and Bentley, 2002). This
paper describes an extension to the original
algorithm, involving the deletion of memory
detectors that are no longer valid. Experiments
are performed on the extended system and
results are analysed. The results show a marked
decrease in false positive errors produced by the
system.

1 INTRODUCTION

A real computer network produces new network traffic
continuously in real-time. Thus, normal behaviours of
network traffic on one day can be different from normal
behaviours of network traffic on another day. Previous
work (Kim and Bentley, 2002), introduced the concept of
an artificial immune system (AIS) based on a dynamic
clonal selection algorithm (DynamiCS) to tackle this type
of problem. This system is capable of learning normal
behaviours by experiencing only a small subset of self
antigens at one time. Its detectors were designed to be
replaced whenever previously observed normal
behaviours no longer represented current normal
behaviours.

The results from experiments on this system (Kim and
Bentley, 2002) showed that DynamiCS could
incrementally learn the globally converged distributions
even though only one subset distribution was given at
each generation. This feature was achieved by employing
three important parameters: tolerisation period, activation
threshold and life span. However, DynamiCS could not
learn new self-antigens when learned self and non-self
behaviours suddenly altered due to legal self change. This
resulted in high false positive (FP) rates when new
antigens were monitored by DynamiCS, although it
produced high true positive (TP) rates. The proposed
explanation of this outcome was that the generated
memory detectors had never been exposed to certain

antigen clusters within their tolerisation periods. Thus
they could not have tolerance against a complete self set.

This paper investigates a further extension of DynamiCS,
so that it can reduce FP rates increased by memory
detectors. As one way to decrease the FP rates caused by
memory detectors, the extended DynamiCS handles
generated memory detectors based on their detection
results. DynamiCS preserved memory detectors for an
infinite lifespan. In contrast, the extended DynamiCS
presented here kills memory detectors if they show poor
self-tolerance to new antigens. This extended system is
tested to see whether surviving memory detectors no
longer cause seriously high FP error rates or not. From
this test, an analysis is performed to understand whether
any other problems occur as a consequence of killing
memory detectors. This paper is organised as follows:
section 2 introduces the summary of DynamiCS algorithm
and experimental results showing the role of memory
detectors in DynamiCS. Section 3 reviews human
immune memory and artificial immune memory. Section
4 presents the extended DynamiCS that adds the deletion
of memory detectors to DyanmiCS. Section 5 finally
concludes this paper.

2 DynamiCS REVISITED

2.1 ALGORITHM

The new AIS introduced in (Kim and Bentley, 2002)
follows the basic concept of the AIS proposed by
Hofmeyr (1999). The adaptability of Hofmeyr’s AIS was
achieved via co-ordinated dynamics of three different
detector populations: immature, mature, and memory
detector populations. In order to fully comprehend the co-
ordinated dynamics of these three detector populations in
terms of AIS adaptability, we introduced an artificial
immune algorithm, called the dynamic clonal selection
algorithm (DynamiCS). Although Hofmeyr proposed
various new features in order to effect great adaptability
and distributed detection, DynamiCS attempts to distill
only the crucial components that yield adaptability to the
system (and reduce the number of system parameters to
ensure the algorithm is usable). This section presents the
algorithm of the previous version of DynamiCS so that
comparison can be made to the new version of this
algorithm.

The following pseudo code provides an overview of the
previous version of DynamiCS. DynamiCS starts by
seeding initial immature detectors with random
genotypes. DynamiCS then employs negative selection by
comparing immature detectors to the given antigen set. As
the result, immature detectors that bind to any antigens
are deleted from the immature detector population and
new immature detectors are generated until the number of
immature detectors becomes the maximum size of the
non-memory detector population. These same processes
continue for the tolerisation period (T) number of
generations. When the total number of generations
reaches T, those immature detectors whose age reaches T
(born at generation 1), become mature detectors.

Initialise Dynamic Clonal Selection Algorithm
Create an initial immature detector population with random detectors;

Generation_Number = 1;
Do
{
 If (Generation_Number = N) then Select a new antigen cluster.
 Select 80% of self and non-self antigens from chosen antigen cluster;

 Reset Parameters
 Generation_Number++; Memory Detector Age++;
 Mature Detector Age++; Immature Detector Age++;

 Monitor Antigens
 { Monitor Antigens by Memory Detectors
 Check whether any memory detector detects a non-self antigen;
 Check whether any memory detector detects a self antigen;

 Monitor Antigens by Mature Detectors
 Check whether any mature detector detects a non-self antigen;
 Check whether any mature detector detects a self antigen;
 Create new memory detectors;
 Old mature detectors are killed;

 Monitor Antigens by Immature Detectors
 Check whether any immature detector detects any self antigen;
 Delete any immature detector matching any self antigen;
 Create new mature detectors;
 }

 If (immature detector population size +
 mature detector population size
 < non-memory detector pop size)
 {
 Do
 { Generate a random detector;
 Add a random detector to an immature detector population;
 } Until (immature detector population size +
 mature detector population size =
 non-memory detector pop size);
 }
} While (generation Number < max Generation)

At generation T + 1, a new antigen set is presented to the
mature detectors to be monitored. Whenever a mature
detector matches an antigen, the match count of a mature
detector increases by one. After all the given antigens
have been compared to all the existing mature detectors,
the system checks: i) whether the match counts of mature
detectors are larger than a pre-defined activation threshold
(A) and ii) whether the ages of mature detectors meet a
pre-defined life span (L). If there is a mature detector with
a match count that is larger than A, this mature detector

becomes a memory detector only if it indeed detects an
intrusion. When a human security officer acknowledges
that this detector detects any intrusion signature
(costimulation), the detector activates and eventually
becomes a memory detector. In addition, if the ages of
mature detectors meet L, those mature detectors are
deleted from the mature detector population.

At generation T + 2, when memory detectors match any
antigen, confirmation is sought immediately from a
human security officer. In this case, if the detected
antigen patterns are confirmed as intrusion signatures, the
detected antigen patterns are instantly deleted from the
antigen set. After monitoring of new antigens by memory
detectors, the remaining antigens are shown to mature
detectors (if there are any). After the antigens have been
monitored by the mature detectors, they are passed to
immature detectors to perform negative selection. From
generation T + 3 onwards, the same monitoring
procedures that operated at generation T + 2 continue in
order to monitor constantly changing antigen sets until the
system terminates. For more detailed description about
DynamiCS, readers are advised to refer to (Kim and
Bentley, 2002)

All experiments used the Wisconsin breast cancer data
set. The cancer data has two classes, ‘Malignant’ and
‘Benign’. The system treated ‘Malignant’ as non-self and
‘Benign’ as self. In order to be sure of providing antigens
of novel distributions, self and non-self antigen data was
clustered into several groups using a clustering algorithm.
The Expectation Maximization (EM) clustering algorithm
was applied to cluster antigen data. The EM algorithm is
widely-used as the basis for various unsupervised learning
algorithms (Mitchell, 1997). We defined three as the
number of generated clusters and this number was
arbitrarily chosen. The EM algorithm divided the 240
‘Malignant’ examples into three clusters of 45, 117 and
78 examples, and the 460 ‘Benign’ examples into three
clusters of 42, 355 and 63 examples. 80% of the self and
non-self antigen data belonging to each cluster were
randomly selected for N generations. Here, 80% was
arbitriarily selected. Therefore, DynamiCS was provided
with different antigen data at each generation and the
distributions of these data changed at every N generations.
The costimulation mechanism involving a security officer
was implemented by simply increasing the match count
only when a detector detects non-self antigens.

2.2 DYNAMICS EXPERIMENTS

The experiments in previous work (Kim and Bentley
2002) simulated a situation in which converged
behaviours learned in an incremental way are suddenly
altered due to legal self change. The results of these
experiments showed that a value of T which was
sufficiently large to show perfect FP rates no longer
demonstrated satisfactory FP rates. More precisely, four
experiments were performed when four different values,
{5, 10, 20, 30}, were given to N: the number of
generations that antigens are selected from a same cluster.

In these four experiments, it was observed that the overall
TP’s and FP’s increase as N grows. Particularly, when N
is as large as a given T, which is tolerisation period, the
obtained FP rates reached high values greater than 0.3.
The inference from this result was that some memory
detectors have never been exposed to a certain antigen
cluster, and thus those memory detectors caused high FP
rates. For this reason, the extension of DynamiCS
introduced in this paper will handle generated memory
detectors based on their detection results.

Before introducing the extended DynamiCS, another set
of experiments was performed by giving different values
for A, the activation threshold of a mature detector, but
using smaller values than the ones used in (Kim and
Bentley 2002). For consistency of experiments throughout
this paper, another four experiments were performed with
the parameter values shown in table 1.

Table 1. Parameter values used for DynamiCS experiments

Figure 1 illustrates the results of these four experiments.
The experiments were run five times and average results
of five runs are shown in figure 1. The X-axes of these
graphs represent the number of generations and the Y-
axes indicate detection rates. Each graph has two lines,
one displaying a True Positive (TP) rate and another
showing a False Positive (FP) rate. The grid lines on the
X axis were placed at every N generations for N = 30.
Each experiment was run for a maximum of 2000
generations.

A = 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1
0 10

0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 10

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 10

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 20

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 20

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 50

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 50

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Figure 1. TP and FP rates when A varies and T = 30, L = 10,
N =30

Figure 2. TP and FP rates when A varies and T = 30, L = 10,
N =30 without memory detectors

Parameters Values

Tolerisation Period (T) 30

Life Span of Mature Detectors (L) 10

Activation Threshold of Mature Detectors (A) {5, 10, 20, 40}

Number of Generations that Antigens are
Selected from the Same Cluster (N)

30

It has been already seen that large A can prevent self
antigen detection to some extent in (Kim and Bentley
2002). The results shown in figure 1 also follow the same
consequence: large A reduces very high FP. Nevertheless,
it still shows unacceptably high FP rates, around 0.5, even
though FP rates dropped by nearly half when A = 40. This
implies that the memory detectors which detected non-
self antigens were not sufficiently self-tolerant.

However, there are two types of detector that are qualified
to detect antigens: memory detectors and mature detectors
that have just activated. Although it was inferred from
previous experimental results that memory detectors
which have never been exposed to a certain antigen
cluster could cause high FP rates, it has not been shown
yet whether memory detectors or mature detectors that
have just activated are the actual cause of this problem. In
order to clarify this issue, another set of experiments was
performed. In the new experiments, DynamiCS did not
generate memory detectors. When mature detectors
activated, they produced detection signals but they were
not converted into memory detectors. Instead, they simply
died off. As the result, antigen detection was performed
only by activated mature detectors in the absence of
memory detectors. Figure 2 shows these new
experimental results. The four important parameters, T, A,
L, and N, have identical values to those used in the
experiments above and they are summarised in table 1.

The four experimental results in figure 2 display similar
outcomes regardless of A values: low TP and FP rates.
This verifies the important role of memory detectors.
They indeed contribute to increase TP rates by detecting
re-encountering antigens. Without memory detectors, TP
rates of DynamiCS fluctuate irregularly within an
unsatisfying range (between 0.1 and 0.8). The low FP
rates revealed in figure 2 also imply that the high FP rates
shown in figure 1 are originated from detection by
memory detectors.

The results exhibited in figure 2 makes it clearer that
DynamiCS needs an appropriate way to handle memory
detectors. In order to propose a new way of handling
generated memory detectors, the next section briefly
introduces how the human immune system maintains
lifetime lasting memory while it continues to sustain self-
tolerance. It also presents the method used to ensure that
these human mechanisms have been implemented in
available AIS’s, in order to acquire artificial immune
memory.

3 RELATED WORK: HANDLING
MEMORY DETECTORS

3.1 HUMAN IMMUNE MEMORY

Immunologists define immune memory as the capability
of the immune system that can fully protect the body from
the re-attack of pathogens, which have previously been
detected. Immune memory is long-lived, often lasting for
many years, even for the lifetime of an individual (Tizard,

1995). The life–long immune memory means that a quick
immune response to reappearing pathogens lasts for the
lifetime despite constant and unpredictable generation of
new memory cells, triggered by new antigen detection.
Experimental observation showed that the memory cell
population is maintained at a roughly constant size within
an individual’s body for his or her lifetime from puberty
onwards (Yates and Callard, 2001), although there is
gradual addition of new memory cells in old age. These
two observations have raised a question of how the
immune system maintains a roughly constant size of
memory detectors while it continues to maintain immune
memory of various types of pathogens that occur during a
lifetime.

Several pieces of research by different immunologists
attempted to explain the immune memory mechanism
from various angles. For instance, one theory by Mackay
(1993) explained this by showing the life-long lifespan of
memory cells and another theory (Matzinger, 1994)
described immune memory being provoked by constant
re-stimulation of memory cells by reappearing antigens.
In contrast to these theories, there is an observation of
maintaining a roughly constant amount of memory cells
in the absence of repeated exposure to antigens or cross-
reactive stimulation (Yates and Callard, 2001). Yates and
Callard showed that a small minority of memory cells are
susceptible to programmed death triggered by contact
with other memory cells. Especially when memory T-
cells proliferate, matching the receptors of other T
memory cells triggers signal cascade leading to
programmed death of T memory cells. This theory
showed that the regulation of a stable population of
memory cells is achieved in absence of antigen
stimulation.

These two interpretations can be combined together into
one abstract explanation, which is the idiotype based
immune network theory proposed by Jerne (1974).
Immune network theory emphasises that the continuous
chain of stimulation by antigens and suppression by other
antibodies can form a large-scale network, and the final
equilibrium status between suppression and stimulation
determines the overall internal memory of the immune
system. Therefore, the stabilised immune network
constructed by proliferation by antigens and suppression
by other antibodies constitutes a converged memory cell
population.

Likewise, many studies in immunology approached the
understanding of how to maintain a converged memory
cell population as one step towards finding an explanation
of lifetime lasting immune memory. Although there is no
clear answer yet, the common explanation from these
studies is that a memory cell population stabilises through
constant death of existing memory cells, recruitment and
proliferation of new memory cells. That is to say that a
roughly constant size of memory cells is maintained not
by keeping memory cells in a static way, but by
continuous loss and new birth of memory cells in a
dynamic way.

Although these studies illustrated how a stabilised
memory cell population is maintained, they did not
clearly explain how a stabilised memory cell population
also maintains robust memory against various types of
antigens and how it shows the associative property. The
study by Smith et al. (1996) has attempted to explain the
associative property of immune memory using Sparse
Distributed Memory (SDM). SDM was originally
introduced by Kanerva (1988) in order to store a very
large number of data items into a memory space, which is
mapped to a smaller number of physical data addresses. It
approximately addresses given data items to a memory
space when data is written. This means that the data item
is recalled by an address sufficiently similar, but not
necessarily equal, to the original address. This
approximate addressing maps sparse and distributed
physical addresses to logical addresses that is much more
dense than existing physical addresses. Smith et al. (1996)
took the view that distributed scattered physical addresses
in SDM has an equivalence with memory cells in a
stabilised memory cell pool, and that the approximated
recalling mechanism of SDM is also equivalent to the
primary and secondary responses of memory cells.
Consequently, Smith et al. (1996) claimed that immune
memory is robust and associative, as is SDM, since both
employ a similar approximate addressing mechanism.

3.2 ARTIFICIAL IMMUNE MEMORY

The immune memory of the human immune system has
been implemented in various ways in different AIS’s. The
common feature of these implementations is that the
immune memory was achieved in an implicit way without
having a separate memory detector/antibody population
(Dasgupta, 1998; Timmis, 2001). Rather, only one type of
antibody population was used and the antibody population
was usually maintained at a constant size. That is to say
that the antibody population was maintained through
constant death of existing antibodies and recruitment and
proliferation of new antibodies. During this process, naïve
antibodies (i.e. newly generated) and a surviving antibody
antibodies (i.e. memory antibodies) remain in the same
antibody population and compete with each other for
survival. Unlike the human immune system, where there
are two different types of immune cell population (a
memory cell and non-memory cell pool) and the
competition between immune cells is only within each
type of population (Yates and Callard, 2001), these AIS’s
did not label memory cells separately and thus they
compete with other maturing and naïve immune cells for
survival.

Among the AIS’s which use only one antibody
population, immune network theory has been a popular
approach to make immune memory emerge by itself
within an AIS (Timmis, 2001; Farmer et al., 1986; Varela
et al., 1988). The AIS’s employing the network theory
formed the immune network as the result of immune
pattern recognition. The specific shape of the immune
network described the immune memory of the given
immune system. The memory that emerges, which is a

stabilised network structure, was also used to handle a
dynamic environment. When a new antibody is generated
and inserted into already formed immune network, this
new antibody competes with other ones that are already in
the network. The new network formed by the surviving
antibodies is expected to provide a new solution to a new
environment without losing the solutions to the previous
environment. This was possible because the AIS decides
on surviving antibodies in the network not only by their
antigen stimulation level but also by their antibody
suppression level. Although some antibodies did not
receive a sufficient degree of stimulation from new
antigens, they would not be deleted as long as they were
not the subject of large suppression from other antibodies.
These antibodies can remain and act as memory cells in
the AIS.

Another type of immune memory employed for AIS’s is
SDM (Smith et al., 1996). Hart and Ross (2001) adopted
SDM in their co-evolutionary GA to cluster moving data.
Immune memory was not explicitly implemented as a
separate antibody population in either work. Instead, the
SDM was used for antibody and antigen matching and
recall. It lets each antibody vote (i.e. match and recall)
several antigens instead of one antigen. Thus, when a new
antigen is presented, the democratic result from all
antibodies decides the label of the antigen, whether self or
non-self. This kind of antibody and antigen matching and
recalling mechanism showed an implicit immune memory
feature by allowing one antibody to match more than one
antigen.

Another work by Gaspar and Collard (1999) investigated
an artificial immune system for a time dependent
optimisation (TDO) problem. Their simple artificial
immune system (Sais) was implemented by adding
several immune system features (such as clonal selection,
immune network theory, hypermutation) to a
conventional GA. In this work, Gaspar and Collard have
shown what affected system robustness, obtained through
immune memory. Robustness is the ability to maintain
diverse optima without losing previously encountered
optima. This feature was expected to allow the system to
provide solutions quickly when previously presented
optimal functions are later given as targets. The
experimental results illustrated that Sais showed stronger
robustness than other types of GA. The stronger
robustness of Sais was achieved by memorising
previously found optima using idiotoype immune network
selection. However, the good improved robustness
resulting from the memory of previously encountered
optima, was not maintained as the number of different
optimisation targets increased.

In contrast to above approaches, Hofmeyr’s AIS (1999)
adopted a separate memory detector population that was
isolated from other detector/antibody populations.
Memory detectors in Hofmyer’s AIS also had two
significant features: quicker response and infinite life
span. This system is the only AIS to provide immune
memory by directly mimicking the memory cells of the
human immune system. Immune memory was no longer

maintained implicitly in this system. Instead, it had
explicit antibodies to retain memory of previously
detected antigens, and these antibodies were treated
differently from other antibodies. Although the initial life
spans of memory antibodies were set to be infinite, they
could be deleted when the number of existing memory
antibodies reached the pre-defined maximum number. If
the number of memory detectors was more than this
number, randomly selected memory detectors were killed
until the number of current memory detectors, including
the newly generated memory detectors, reached the
maximum number of memory detectors.

This section has introduced three different types of
artificial immune memories: those based on network
theory, SDM and an explicit memory population. Among
them, an explicit memory population seems to have an
advantage over the two types of implicitly emerging
immune memory. As reported in Gaspar and Collard’s
work (1999), the AIS without an explicit memory
population failed to maintain its memory when the
number of required antibodies grew in order to cover all
the existing niches in a solution space. This was because
these antibodies competed with newly generated
antibodies that were more stimulated by current antigens.
It might always be more likely for new antibodies to
dominate antibodies memorising past antigens, since their
antigen stimulation level is always higher than the
memory antibody’s antigen stimulation level. When the
number of required antibodies is not large, they can still
remain in the antibody population alongside the new
antibodies. However, when the number of required
antibodies grows, they cannot always remain in the
antibody population and thus the AIS prefer currently
stimulated antibodies to other memory antibodies. Thus,
some memory antibodies will be lost. On the other hand,
memory antibodies in an explicit memory population do
not compete with new antibodies and thus memory
antibodies would not be lost as the expense of space for
new antibodies. To benefit from this advantage,
DynamiCS uses an explicit memory population to
maintain memory detectors.

Although this work has extensively studied how the
human immune system maintains its immune memory
and also how AIS’s obtain their memory, it is not very
clear how either of these systems stop self-detection of
previously generated memory detectors. However, there is
still one suggestion from this study that can be directly
used: replacing memory detectors. As Yates and Callard
(2001) have shown, memory detectors are constantly
replaced while the population size is roughly constant.
Following this understanding, the extended DynamiCS
constantly replaces memory detectors. The next section
describes one approach to replacement of memory
detectors, via memory detector costimulation.

4 EXTENDED DYNAMICS: KILLING
MEMORY DETECTORS

4.1 ALGORITHM DESCRIPTION

All the generated memory detectors in DynamiCS have
infinite life span and an activation threshold of one.
However, this is quite different from what really happens
to memory cells in the human immune system. Although
memory cells have a much lower activation threshold and
a longer life span than other maturing cells, the memory
cell population stabilises through constant death of
existing memory cells, recruitment and proliferation of
new memory cells. The infinite life span of memory
detectors adopted by DynamiCS is not a biologically
inspired idea. Thus, instead of giving an infinite life span
to generated memory detectors, the extended DynamiCS
kills memory detectors based on their current detection
results. If antigens that are newly detected by memory
detectors turn out to be self-antigens, these memory
detectors are deleted from the memory detector
population. This modification mimics the costimulation of
memory detector detection. To be precise, whenever a
memory detector in the memory detector population
detects any antigen, it asks for confirmation about
whether the detected antigen is self or non-self from a
human officer. It sends a detection signal only if the
human officer confirms that the detected antigen is non-
self, otherwise it is deleted. Thus, the extended
DynamiCS deletes harmful memory detectors by applying
costimulation to memory detectors as it does to activating
mature detectors.

4.2 EXTENDED DYNAMICS EXPERIMENTS

Four different experiments were performed to test
whether the extended DynamiCS can reduce the high FP
rates observed in the previous experiment. The extended
DynamiCS was set with the same parameter values used
in the experiments reported in 7.3 DynamiCS Revisited
and they are summarised in table 1.

Figure 3 illustrates the results of four different
experiments. These results can be compared to those in
figure 1. Regardless of A, all of these four results show
reasonably low FP rates, which are mostly lower than 0.1.
This outcome is clearly different from the ones seen in
figure 1, which has much higher FP rates and was much
more sensitive to various A values. In figure 1, as A
increases, the FP rates drop rapidly. In contrast, the
changes of the FP rates in figure 3 are not clearly
noticeable depending on various A values. In addition, the
TP rate changes found in figure 1 and figure 3 are quite
different. The TP rates shown in figure 3 decrease to a
much greater extent compared to the TP rate changes
observed in figure 1. In summary, as A increases, the
amount of FP rate drop is much larger in the experimental
results of original DynamiCS, while the degree of TP rate
fall is much larger in the experimental results of the
extended DynamiCS.

A = 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 10

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 20

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 40

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Figure 3. TP and FP rates when A varies and T = 30, L = 10, N =30 after killing memory detectors

Table 2. Average Number of Surviving, Generated and
Deleted Memory Detectors per generation for DynamiCS
and Extended DynamiCS. The values in parentheses are
variances.

 DynamiCS Extended DynamiCS

 S
u

rv
iv

in
g

M

e
m

o
ry

D

e
te

ct
o

rs

G
e

n
e

ra
te

d

M
e

m
o

ry

D
e

te
ct

o
rs

D
e

le
te

d
 M

e
m

o
ry

D

e
te

ct
o

rs

S
u

rv
iv

in
g

M

e
m

o
ry

D

e
te

ct
o

rs

G
e

n
e

ra
te

d

M
e

m
o

ry

D
e

te
ct

o
rs

D
e

le
te

d
 M

e
m

o
ry

D

e
te

ct
o

rs

M
e

m
o

ry
 D

et
ec

o
r

C
o

S
tim

u
la

tio
n

p

e
r

g
en

e
ra

tio
n

A=5 75.75
(8.2)

75.75
(8.29)

0 46.5 (3) 205.5
(8.03)

159
(8.33)

40.89
(4.48)

A=10
49.5

(5.7)

49.5

(5.7)
0 32.75

(18.25)
124.25
(50.69)

91.5
(33.77)

29.36

(6.28)

A=20
33.5

(1)

33.5

(1)
0 24.25

(14.25)

78.75

(5.62)
54.5

(3.83)

20.39

(8.35)

A=40
20.5

(1.67)

20.5

(1.67)
0

14.5

(1.67)

55.25

(4.09)
40.75
(5.02)

16.43

(11.76)

These different effects explain how useful memory
detectors in each system are for detecting new non-self
antigens without mistakenly detecting self antigens. In the
original DynaimCS, there are some memory detectors that
detect self-antigens mistakenly and thus cause high FP
rates. The generation of these memory detectors was
prevented to some extent by restricting the conditions that
allow mature detectors to be memory detectors. A large
value for A in original DynamiCS did this job, and the

large FP rate drop in figure 1 was obtained due to large A.
Nevertheless, it has not yet gained satisfactory FP rates
with a quite large value, 100, for A and also large A
caused TP rates to decline. In contrast, for extended
DynamicCS, memory detectors that caused high FP rates
could not survive and thus FP rates were consistently low
regardless of A’s value. Extended DynamiCS only kept
memory detectors that were useful for detecting non-self
antigens without detecting self antigens. For the same
reason, large A reduced the number of useful memory
detectors and it resulted in lower TP rates.

Furthermore, the new strategy of the extended DynamiCS
affects detection of non-self antigens. Compared to the
original DynamiCS, it is much harder for memory
detectors to survive in the extended DynamiCS. Table 2
shows the total number of surviving, generated and
deleted memory detectors for a total of two thousand
generations. These numbers are averaged across five runs.
Thus, the average numbers of surviving memory detectors
are smaller than the ones in DynamiCS when the same
values are given to other parameters (see table 2).
Consequently, the extended DynamiCS gains higher TP
rates when it has a more relaxed condition for the
activation of mature detectors, as in the cases having
small values for A (see figure 3). Thus, the extended
DynamiCS was able to obtain high TP rates and low FP
rates when it had a small value for A.

However, there is another issue to be concerned with in
the application of the extended DynamiCS for intrusion
detection. Since the extended DynamiCS cured a problem
of DynamiCS by applying costimulation to memory
detectors, and costimulation was implemented in
extended DynamiCS by asking for confirmation from a

human security officer, the large number of memory
detector costimulations can hinder the adoption of the
extended DynamiCS. Too much requirement for human
intervention could render the extended DynamiCS
useless. Thus, an effective IDS always requires the lowest
frequency of costimulation per generation, leading to the
least requirement for human intervention.

The amount of memory detector costimulation per
generation governs the maximum number of activating
detectors that will ask for detection confirmation from a
security officer. Thus, it can be defined as the number of
existing memory detectors per generation plus the number
of mature detectors that have just activated (i.e. that just
became memory detectors) per generation. The average
numbers of memory detector costimulations per
generation are shown in table 2. Although it is preferred
for the extended DynamiCS to have smaller value of A
because it leads to higher TP rates while sustaining low
FP rates, this case tends to have larger number of memory
detector costimulations. Thus, this approach, obtaining
high TP rates and low FP rates by having small A values,
does not seem to be ideal. Instead, these results suggest
that large A can be more favourable than the case with
small A if it can maintain a satisfactorily high TP rate.
The experimental results require the extended DynamiCS
to have a procedure to increase TP rates while it sustains a
smaller number of memory detector costimulations. As
one approach to this, future work investigates applying
hypermutation for gene library evolution, as observed in
the human immune system.

5 CONCLUSION

The experimental results in the previous work verified
that DynamiCS could not learn new self-antigens when
learned self and non-self behaviours are suddenly altered
due to legal self change (Kim and Bentley, 2002). This
resulted in high FP rates when new antigens were
monitored by DynamiCS, although it produced high TP
rates. The proposed explanation of this outcome was that
the generated memory detectors had never been exposed
to a certain antigen cluster within their tolerisation
periods. Thus they could not have a sufficient degree of
tolerance against a complete self set. For tackling this
problem, this paper investigated a further extension of
DynamiCS, so that it can reduce FP rates increased by
memory detectors.

As one way to decrease the FP rates caused by memory
detectors, DynamiCS was extended by eliminating
memory detectors when they showed a poor degree of
self-tolerance to new antigens. This extended system was
tested to see whether surviving memory detectors no
longer cause seriously high FP error rates or not. The test
results showed that deletion of memory detectors based
on their self-antigen detection dramatically decreased
high FP rates that were observed in the previous paper.
However, this method required a larger amount of
costimulation in order to gain such benefits. The large
amount of costimulation indeed can render the system

weak for intrusion detection. This disadvantage demanded
a further extension of DynamiCS.

In order to resolve this problem, further work studies the
use of hypermutation to simulate gene library evolution.
This additional extension is described in the sister paper
to this paper, entitled: A Model of Gene Library Evolution
in the Dynamic Conal Selection Algorithm.

References

Kim, J. and Bentley, P. J. (2002) “Towards an Artificial
Immune System for Network Intrusion Detection: An
Investigation of Dynamic Clonal Selection”, Proceedings
of Congress on Evolutionary Computation, pp.1015-1020,
2002.

Hofmeyr, S., (1999) An Immunological Model of
Distributed Detection and Its Application to Computer
Security, PhD Thesis, Dept of Computer Science,
University of New Mexico, 1999.

Tizard, I. R., (1995) Immunology:Introduction, 4th Ed,
Saunders College Publishing, 1995.

Yates, A. and Callard, R., (2001) “Cell Death and the
Maintenance of Immunological Memory”, Discrete and
Continuous Dynamical Systems B 1, pp.43-60, 2001.

Mitchell, T., Machine Learning, McGraw-Hill, 1997.

Mackay, C. R., (1993) “Immunological Memory”,
Advanced Immunology, vol. 53, pp.217-265, 1993.

Matzinger, P., (1994) “Immunological Memories Are
Made Of This?”, Nature, Vol. 369 No. 6382, pp.605-606,
1994.

Jerne, N. K., (1974) “Towards a Network Theory of the
Immune System”, Annual Immunology (Inst. Pasteur),
Vol.125, No.C., pp.373-389, 1974.

Smith, D. J., Forrest, S., and Perelson, A. S., (1996)
“Immunological Memory is Associative”, Workshop
Notes, Workshop 4: Immunity Based Systems, Int.
Conference of Multiagent Systems, Kyoto, Japan, pp.62-
70, 1996.

Kanerva, P., (1988) Sparse Distributed Memory, MIT
Press, Cambridge, M, 1988.

Dasgupta, D., (1998) “An Overview of Artificial Immune
Systems and Their Applications”, Artificial Immune
Systems and Their Applications, (Ed) Dasgupta, D.,
Springer-Verlag, Berlin, 1998.

Timmis, J., (2001) Artificial Immune Systems: a Novel
Data Analysis Technique Inspired by the Immune
Network Theory, PhD Thesis, Dept. of Computer Science,
University of Wales, Aberystwyth, 2001.

Farmer, J. D., Packard, N. H., and Perelson, A. S., (1986)
“The Immune System, Adaptation and Machine
Learning”, Physica 22D, pp.182-204, 1986.

Hart, E., and Ross, P., (2001) “Clustering Moving Data
with a Modified Immune Algorithm”, Proceeding of

Applications of Evolutionary Computing, EvoWorkshops,
pp. 394-404, 2001.

Gaspar, A., and Collard, P., (1999) “From Gas to
Artificial Immune Systems: Improving Adaptation in
Time Dependent Optimisation”, Proceeding of CEC99,
1999.

Stable Clusters Formation in an Artificial Immune System

S.T. Wierzchoń
Department of Computer Science,

Białystok Technical University
ul. Wiejska 45a, 15-351 Białystok, Poland

and
Institute of Computer Science,
Polish Academy of Sciences

ul. Ordona 21, 01-267 Warszawa, Poland

U. Kużelewska
Department of Computer Science,

Białystok Technical University
ul. Wiejska 45a, 15-351 Białystok, Poland

Abstract

A new version of an artificial immune system
designed for automated cluster formation in
training data is presented. The algorithm fully
exploits self-organizing properties of the
vertebrate immune system and produces stable
immune network. The algorithm uses the
minimal number of control parameters.

1 INTRODUCTION
Artificial Immune System, or AIS, is a new, biologically
inspired, paradigm of information processing. Its main
principles are abstracted from the behaviour and
properties of the vertebrate immune system, which is
responsible for maintaining homeostasis of a living
organism and particularly for protecting the organism
from pathogens that could disrupt that homeostasis. More
precisely, the immune system is a multi-layered structure.
Each layer is of different complexity and the most
complex is so-called adaptive immune system – consult
(Hofmeyr, 2001) for details. In this paper by “immune
system” we will understand the adaptive immune system.
From a computer science perspective this last layer is a
complex, self organizing and highly distributed system
which has no centralized control and which uses learning
and memory when solving particular tasks. The learning
process does not require negative examples and the
acquired knowledge is represented in explicit form.
The main actors of the adaptive immune system are B-
lymphocytes (or B-cells) which mature in bone marrow,
and T-lymphocytes (or T-cells) which mature in thymus.
B-cells can be viewed as the commandos equipped with
specialized weapon (i.e. antibodies attached to a single B-
cell surface); each type of weapon is designed to fight
different kind of enemy (i.e. pathogen or more precisely:
antigen). B-cells can start their attack only after receiving
signal from their commanders, i.e. subspecies of T-cells
called helper T-cells, or Th-cells.
Thus, from a computer science point of view, Th-cells are
responsible for Self/Non-self discrimination and the
mechanisms governing Th-cells behaviour are used for

designing novelty detection algorithms which can be used
e.g. in the detection of computer viruses, or anomaly
detection – consult (Dasgupta, 1999) for details. The
“algorithms” used by B-cells (and reviewed in Section 2)
are useful in adaptive data analysis, (Timmis, 2000), (De
Castro and von Zuben, 2001), machine learning (Hunt and
Cooke, 1996) or function optimisation (Bersini, 1990).
In this paper a new algorithm for adaptive clusters
formation is given. Mentally based on the idea developed
by Timmis (2000) the algorithm almost does not require
control parameters and produces stable, long lived
clusters. Section 3 describes this new algorithm and
Section 4 contains numerical examples. Some general
properties of the algorithm are discussed in Section 5.
A reader interested in models used in theoretical
immunology is referred to the paper (Perelson and
Weisbuch, 1997).

2 IMMUNE PRINCIPLES
Perhaps the first paper announcing exciting properties of
the immune system was that of Farmer, Packard and
Perelson (1986). As noted by Timmis (2000), the model
described in this paper has shown how to use immune
mechanisms in designing computer learning systems by:
(i) using the idea of idiotypic network to achieve memory
of what is being learnt, (ii) using a simple pattern
matching mechanism between B-cell and antigen to
define affinity, (iii) only representing B cells in the model
and ignoring the effect of T cells, (iv) using a simple
equation to model the stimulation of the B-cell, and (v)
using mutation mechanisms to create diverse set of B
cells. Let us briefly describe main mechanisms engaged
during the immune response.
A single B-cell has about 105 receptors (antibodies)
located on its surface. Each receptor has a specialized
region, called paratope, used for identifying other
molecules. Being a 3-D structure with uneven surface the
paratope have a unique shape and other unique
characteristics (e.g. van der Waals forces) referred to as
the specificity. The regions on any molecule that the
paratopes can attach to are called epitopes. If the two
colliding molecules have complementary specificities,

they bind to each other and the strength of the bond
(called affinity) depends on the degree of
complementarity. A molecule bound by an antibody is
referred to as the antigen1. A crucial role of the immune
system is the binding of antibodies with antigens which
serves to tag them for destruction by other cells. This
process is termed antigen recognition. To treat formally
the recognition problem, Perelson (1989) introduced the
notion of the shape space. Namely, if there are m features
influencing the interaction between the molecules (i.e. the
spatial dimensions, charge distribution, etc.) and Di is the
domain of i-th feature (i = 1, …, m) then each molecule is
reduced to a point (the generalized shape of a molecule)
in m-dimensional space (S = D1 × … × Dm. Typically S is
a subset of m-dimensional Hamming space, or m-
dimensional Euclidean space.
When a B-cell recognizes an antigen, it clones (i.e.
produces identical copies of itself) as well as secretes free
antibodies. The process of amplifying only those cells that
produce a useful antibody type is called clonal selection,
and the number of clones produced by a lymphocyte is
proportional to its stimulation level. Clones are subjected
to somatic mutation (characterized by high mutation rate)
that results with new species of B cells having slightly
different antibodies. These new B cells also bind to
antigens and if they have a high affinity to the antigens
they in turn will be activated and cloned. The rate of
cloning a B-cell is proportional to its “fitness” to the
problem: fittest cells replicate the most. The somatic
mutation guarantees sufficient variation of the set of
clones, while selection is provided by competition for
pathogens. The whole process of (in fact: Darwinian)
selection and differentiation of B-cell receptors leading to
the evolution of B-cell populations better adapted to
recognize specific epitopes is said to be affinity
maturation.
Besides somatic mutation the immune system uses a
number of other mechanism to maintain sufficient
diversity and plasticity. Particularly about five percent of
the B-cells are replaced every day by new lymphocytes
generated in the bone marrow. This process is termed
apoptosis.
The immune system possesses two types of response:
primary and secondary. The primary response occurs
when the B cells meet the antigen for the first time and
reacts against it. To learn the structure of the antigen
epitopes, clonal selection and somatic mutation are used.
The primary response takes some time (usually about 3
weeks) to destroy the antigen. If the organism is
reinfected with a previously encountered antigen, it will
have an adapted subpopulation of B-cells to provide a
very specific and rapid secondary response. From a
computer science perspective the primary response
corresponds to the identification of clusters in the training
data, while the secondary response – to the pattern
recognition problem, i.e. the assignment of a new data

1 Antigen is a shorthand of antibodies generation.

into one of existing clusters. Interestingly, the secondary
response is not only triggered by the re-introduction of the
same antigens, but also by infection with new antigens
that are similar to previously seen antigens. That is why
we say that the immune memory is associative. This
phenomenon is modelled in the shape-space formalism by
introducing so-called recognition ball, i.e. a ball Br with
radius r and centred in the point corresponding to the
generalized shape of a given antibody.
The final immune system principle that plays a useful role
in designing AIS’s is that of immune network theory
formulated by Jerne (1974), and further developed by
Perelson (1986). According to this theory (called also
Jerne’s hypothesis) the immune response is based not
only on the interaction of B-cells and antigens but also on
the interactions of B-cells with other B-cells. These cells
provide both a stimulation and suppression effect on one
another and it is partially through this interaction that the
memory is retained in the immune system.
The immune system is in permanent flux. The whole
network is subjected structural perturbations through
appearance and disappearance of some cell species. The
introduction of new species is caused by somatic
mutation, apoptosis, or combinatorial diversity (e.g.
genetic operations used to produce new paratopes). A
crucial issue is the fact that the network as such, and not
the environment, exerts the greatest pressure in the
selection of the new species to be integrated in the
network. Thus, the immune network is self-organizing,
since it determines the survival of newly created clones,
and it determines its own size. This is referred to as the
meta-dynamics of the system, (Varela and A. Coutinho,
1991).
The two most influential data analysis systems based on
the immune metaphor are aiNet (De Castro and von
Zuben, 2001) and AINE (Timmis, 2000). In both the
systems the training set is identified with the set of
antigens and the aim is to produce a set of B cells or
antibodies representing these antigens.
According to Jerne’s hypothesis, AINE produces
networks (counterparts of idiotypic network) describing
the key features of data items within the training set. The
system uses almost all mechanisms described in this
section, i.e. (i) it uses a set of B cells each of which is
capable of recognizing antigens, (ii) similar B cells are
linked together; these links form a network of B cells, (iii)
clonal selection and hypermutation are performed on B
cells, (iv) a number of B cells can be represented by an
artificial recognition ball, or ARB. In fact, to improve
stability of the immune network, AINE uses a population
of ARBs and not the population of B cells. It needs four
important control parameters: network affinity threshold
(NAT), the mutation rate, the number of ARBs and the
number of clones produced by a stimulated ARB. The
influence of these parameters on final network is analysed
in (Knight and Timmis, 2001).
The aiNet system, on the other hand, uses simplified
representation: instead of B cells or ARBs it simply

develops a population of antibodies. The population is
initialised randomly (while AINE uses a random subset of
antigens) and next it is modified by clonal selection,
hypermutation and apoptosis. Interesting feature of the
algorithm is that the clonal selection controls the network
dynamics and metadynamics. Its main drawback is large
number of user-defined control parameters. Further to
obtain the immune network we have to use standard
clustering tools: hierarchical clustering and graph-
theoretic algorithms. But its advantage is very concise
description of training data. In some cases such a data
reduction equals 90% (Wierzchoń, 2001).
Both the algorithms are examples of unsupervised
machine learning algorithms. Watkins (2001) used a
combination of the just described approaches to design
supervised learning algorithm. His aim was to develop a
predictive model based on input data and the known
classes in the data set.
To finish this section, let us note that the model of
immune memory proposed by Jerne resembles the models
of hypercycles or autocatalytic sets considered in the
context of prebiotic chemical evolution – cf. (Bagley and
Farmer, 1992) or (Eigen, 1971). It seems that careful
examination of these models may be of value in
constructing effective data analysis.

3 A NEW ALGORITHM
As stated in previous section, natural immune system
contains B-cells with antibodies attached to their surfaces.

Fi

In our
reduced
the aiN
set of a

antigens. Each element y ∈ {Ab, Ag} is m-dimensional
real-valued vector y = {y1, …,ym}.
The algorithm depicted on Figure 1 creates an AIN in the
way similar to that used in (Timmis, 2000) but with some
significant modifications. The nodes of the AIN represent
antibodies, and their aim is representation of generalized
characteristics of the antigens. Connected antibodies form
clusters, so if any antibody from the cluster recognizes an
antigen, it means the antigen belongs to this cluster.
Recognition of an antigen, ag, by antibodies relies upon
searching for an antibody ab* that minimizes Euclidean
distance d(ag, abi), i = 1, …, n. The inverse of d(ag, abi),
can be viewed as the affinity of ag to abi. Thus the smaller
the distance d(ag, ab*) the better representation of ag by
ab* is. The maximal length of an arc joining two nodes in
the AIN is just the NAT scalar. Cells (antigens and
antibodies) located further than NAT do not influence one
another. The NAT parameter determines the granularity of
the network and its overall connectivity (Knight and
Timmis, 2001).

3.1 INITIALIZATION OF THE AIN
Like in (Timmis, 2000) this process is divided into three
stages. First, the training data are normalized, i.e. the set
Ag becomes a subset of m-dimensional unit cube [0, 1]m.
The second stage is to calculate an initial NAT value
using the Ag set. Timmis calculates it as <d>⋅α, where
<d> is the average distance between each item in Ag and
α ∈ (0,1〉 is a constant. Such computed parameter was
fixed during whole process of network creation. However
such a procedure requires several runs of the algorithm
and necessity of choosing the best value. In our approach
the NAT value is computed in every iteration of the
algorithm without external intervention. Initial NAT value
is computed as follows. Let

Initialization

D = {d(agi, agj): i = 1,…, k-1, j = 2, …, k, j > i}
be the set of distances values between each unique pair of
antigens. Sort ascending the elements of D and denote
D’ = {d1, … dl} (1)
a subset of D consisting of l ≤ k⋅(k – 1)/2 initial elements.
Now the NAT is computed as the average value of the
distances in the set D’. The third stage is to construct
initial immune network. That is the set of antibodies Ab
(also a subset of [0, 1]m) is randomly initialised. This is in
contrast with Timmis’ approach. Next two antibodies are

termination-
condition?

Present antigens to a
set of antibodies

Y N

End of forming
network mu s
Proliferation and
tation of antibodie
gure

 AIN
 to a
et
ntibo
1. The algorithm for an imm
generation

 (artificial immune netw
ntibodies. This resembles t
system. Let Ab = {ab1, …,
dies, and Ag = {ag1, …, a
une network

ork) B cells are
he idea applied in
 abn} denotes the
gk} be the set of

joined together only if their distance is not greater than
the NAT value.

3.2 PRESENTATION OF THE ANTIGENS
 In this stage every member of the Ag set is presented to
the network and the stimulation level of each antibody,
sl(abi), i = 1,…, n, is computed.
According to Jerne’s hypothesis the stimulation level of a
B-cell is the sum of three factors: its affinity to the
antigens, its affinity to its neighbours in the network and
its enmity to these neighbours. This definition of the

stimulation level was applied in the AINE system. On the
other hand, in the aiNet only the affinity of each antigen
to all antibodies was taken into account. Similar idea was
implemented in our system AIN. Define namely δi = minj
d(abi, agj) to be the minimal distance between i-th
antibody and the set of antigens. Now if δi ≤ NAT then
sl(abi) = 1 – δi, and sl(abi) = 0 otherwise.
Knowing the stimulation level of each antibody we can
implement apoptosis, i.e. we can define the set of effective
antibodies, Ab* ⊆ Ab. Initially Ab* = nil. First of all
antibodies with zero stimulation value are removed from
the set Ab. Denote Ab′ reduced set. Next, for each
antigen, ag, we determine the set of antibodies
recognizing this ag. If a given antigen is recognized by
the unique antibody ab* then add this ab* to the set Ab*.
Hence Ab′ – Ab* is the set of potentially redundant
antibodies. If Ab″ ⊂ (Ab′ – Ab*) is the set of antibodies
each of which recognizes a group of identical antigens,
we find a single antibody with highest stimulation value;
only this antibody is moved to the set Ab*.
This way we are still in the frames of an idiotypic
network. Stimulation value awards antibodies with
highest affinity to the antigens, while suppressive
mechanisms are moved to the purging procedure. It seems
that correctly designed purging procedure is responsible
for generation of stable immune networks. Nasaroui,
Gonzales and Dasgupta (2002) introduced fuzzy ARBs to
improve stability of the immune networks. In our opinion
it is not necessary. We can even use “standard” definition
of stimulation level as proposed by Jerne and we can still
generate stable networks provided that efficient antibodies
elimination (described above) is implemented – see Sect.
4 for numerical results.

3.3 PROLIFERATION

Again this process is divided into three stages. First, the
NAT value is recalculated using the cells from the set
Ab*. To do so, the set D’ – see Eqn. (1) – is constructed;
its cardinality is l’ ≤ l.

Second, most stimulated cells from the set Ab* are cloned
and mutated. In cloning process an antibody with
stimulation level sl produces cmax⋅sl clones, where cmax is
a constant (maximal number of clones). Clones are added
to a separate set of clones C. Each clone c = (c1, …, cm) is
subjected mutation according to the equation
ci = ci + r⋅∆, i = 1, …, m
where r is a random number from the unit interval and ∆
= 1 – yi or ∆ = –yi (the decision which ∆ value to choose
is made randomly).
Third, mutated clones from the set C are integrated with
the network, i.e. Ab = Ab* ∪ C. Finally the immune
network is reconstructed: two antbodies abi, abj are joined
together only if d(abi, abj) ≤ NAT.

4 EXPERIMENTS
To verify the quality of this new algorithm, three data sets
were analysed. In each experiment we focused on two-
dimensional data representing two separate clusters. The
first experiment is concerned with linearly separable
clusters (Figures 2a-2d). In two remaining experiments,
Figures 3a-3d and 4a-4d, training data exhibiting non-
trivial patterns were used. Every AIN was developed
through 50 iterations to observe stabilization of the NAT
value as well as stabilization of resulting network size.
Every set of figures, denoted a – d, includes: (a) antigen
set, (b) final network structure, (c) evolution of NAT and
(d) evolution of the network size. In every case after some
number of iterations network becomes stable. This
number depends on size and complexity of antigen set.

Figure 2a: Antigens set

Figure 2b: Final immune network

Figure 2c: Evolution of the NAT value

Figure 3a: Antigen set

Figure 3c: Evolution of the NAT value

Figure 2d: Evolution of the network size

Figure 3b: Final immune network

Figure 3d: Evolution of the network size

Figure 4a: Antigen set

Figure 4b: Final immune network

Figure 4c: Evolution of the NAT value

Figure 4d: Evolution of the network size

Figure 5a: Evolution of the NAT value in a system with

“standard” definition of stimulation level

Figure 5b: Evolution of the network size in a system with
“standard” definition of stimulation level

Interestingly, the algorithm behaves almost identical
when the stimulation level is defined as in (Timmis,

2000). Figures 5a and 5b demonstrate evolution of the
NAT value and network size for the antigen set presented

on figure 4a. In fact minor modifications of the purging
procedure results in different behaviour of the algorithm
(see the url: http://www.ipipan.waw.pl/~stw/ais for
different data sets analysed with different purging
strategy).

5 CONCLUSIONS
In all the cases analysed the algorithm is able to produce
correct networks after 15-20 iterations. After this time the
network structure becomes stable – its size and the NAT
value oscillates around fixed value. This fact can be used
as the definition of the termination condition. Final
network structure represents immune memory – it can
react faster and better when similar data are encountered
in the future.
Interestingly, in each case we can observe data
compression phenomenon like in the aiNet system. In
first experiment the antigen set consists of 100 items and
final immune network consists of 21 cells; so data
compression ratio is 79%. In the second case data
compression attains 69%, and in the third case – 29%.
This property results from the second stage of the purging
procedure (i.e. further reduction of the set Ab′ described
in Section 3.2). The compression ratio depends on the
topology of input data.
The most important feature of the immune system is its
ability to recognize new pathogens. The algorithm
described in this paper passes this examination very well.
The number, shape and location of generated clusters
precisely reflects topological properties of the training set.
Additionally clusters are formed adaptively. This is in
contrast to the aiNet system, where antibodies are
generated first, and next graph theoretical methods are
used to cluster these antibodies.
Finally the algorithm requires minimal number of control
parameters indeed: it is necessary to define only the
cardinality of the set D’ – cf. Eqn. (1) – and maximal
number of clones cmax. The NAT value evolves during
subsequent iterations of the algorithm. The same applies
to the network size.

6 FUTURE WORK

The algorithm described in this paper possesses many
intriguing properties. Detailed mathematical analysis is
necessary to confirm these properties. Particularly deeper
analysis of the influence of stimulation level computation
and purging implementation on the algorithm behaviour
should be performed.
It was also observed (results not reported here) that in
case of overlapping clusters the algorithm displays a kind
of cross-reactive memory; this phenomenon should also
be carefully verified.
Lastly, the algorithm behaviour on more complex data
sets will be examined, and more flexible strategies for
choosing effective antibodies Ab* will be worked out.

Acknowledgments
First author would like to thank Leandro Nunes de Castro
and Jonathan Timmis for exhaustive comments on their
systems as well as to the unknown referees for
constructive remarks.

References
R. J. Bagley, and J. D. Farmer (1992). Spontaneous
emergence of a metabolism. In: C.G. Langton, C. Taylor,
J.D. Farmer, S. Rasmussen, eds., Proc. of the Workshop
on Artificial Life (ALIFE’90), vol. 5 of Santa Fe Institute
Studies in the Sciences of Complexity, Addison-Weseley
1992, 93-140
H. Bersini (1990) Hints for adaptive problem solving
gleaned from immune networks. In: Proc. of the First
Workshop on Parallel Problem Solving from Nature,
LNCS 496, 343-354. Berlin: Springer-Verlag.
D. Dasgupta, ed. (1999) Artificial Immune Systems and
Their Applications. Berlin: Springer-Verlag.
L. N. De Castro, and F. J. von Zuben (2001) aiNet: An
artificial immune network for data analysis. In: H.A.
Abbas, R.A. Sarker, Ch.S. Newton, eds., Data Mining: A
Heuristic Approach, 231-259. Idea Group Publishing,
USA
M. Eigen (1971) Selforganization of matter and the
evolution of biological macromolecules. Naturwis-
senschaften 58 : 465-523
J. D. Farmer, N. H. Packard, and A. S. Perelson (1986)
The immune system, adaptation, and machine learning.
Physica D 22:187-204
S. A. Hofmeyr (2001) An interpretative introduction to
the immune system. In L.A. Sagel and I.R. Cohen (eds.)
Design Principles for the Immune System and Other
Distributed Autonomous Systems, 3-26. New York:
Oxford University Press.
J. E. Hunt, and D. E. Cooke (1996) Learning using an
artificial immune system. J. of network and Computer
Applications, 19: 189-212
N. K. Jerne (1974) Towards a network theory of the
immune system. Ann. Immunol (Inst. Pasteur) 125C: 373-
389
T. Knight, and J. Timmis (2001) Assessing the
performance of the resource limited artificial immune
system AINE. Technical Report No. 3-01. Computing
Laboratory, University of Kent, Canterbury, Kent, UK.
O. Nasaroui, F. Gonzales and D. Dasgupta (2002) The
fuzzy artificial immune system: Motivations, basic
concepts, and application to clustering and Web profiling.
In Proc. of the IEEE International Conf. On Fuzzy
Systems at WCCI, pp. 711-716, Hawaii, May 12-17
A. S. Perelson (1989) Immune network theory.
Immunological Reviews, 110: 5-33

http://www.ipipan.waw.pl/~stw/ais

A. S. Perelson, and G. Weisbuch (1997) Immunology for
physicists. Reviews of Modern Physics, 69: 1219-1265
J. I. Timmis (2000) Artificial immune systems: A novel
data analysis technique inspired by the immune network
theory. Ph. D. Thesis. Department of Computer Science,
University of Wales, Aberystwyth, September 2000
F.J. Varela, and A. Coutinho (1991) Second generation
immune networks. Immunology Today, 12: 159-166
A. B. Watkins (2001) AIRS: A resource limited artificial
immune classifier. M. Sc. Thesis. Department of
Computer Science, Mississippi State University,
December 2001
S. T. Wierzchoń (2001) Artificial Immune Systems.
Theory and Applications (in Polish). Akademicka Oficyna
Wydawnicza EXIT, Warszawa 2001. ISBN 83-87674-30-
3, 282+vii pp.

An artificial immune system for continuous analysis
of time-varying data

Dr. Mark Neal,
Department of Computer Science,

University of Wales,
Aberystwyth,

Ceredigion, SY23 3AF
U.K.

Email: mjn@aber.ac.uk

Abstract

This paper presents an artificial immune system
(AIS) which produces artificial immune networks
that are meaningful, of a bounded size and dynamic
over a very large number of data presentations.
This behaviour had proved elusive up to this time
but has now permitted the application of the AIS to
situations requiring continuous learning. It also
removes the need to decide when to stop training
an AIS. The new version of the algorithm is
described, and results are presented for analysis of
static and dynamic versions of a trivial two-
dimensional data set and Fisher’s Iris data. It is
argued that the changes made from previous
versions of the “resource limited” algorithm are in
keeping with the goals of remaining true to the
immune system analogy and making the system as
simple as possible.

1 INTRODUCTION
The human immune system is a complex natural defence
mechanism that recognizes and responds to the presence of
foreign substances (pathogens). The response elicited
depends on the previous experience of the immune system
in question. Invaders that display antigens (features of
pathogens) that have been experienced previously elicit a
more rapid and more powerful response. This flexibility
enables the immune system to remove a huge variety of
infections, many of them novel to the immune system in
question. This ability to learn and respond to a wide variety
of similar but different pathogens has roused the interest of
Artificial Intelligence researchers who wish to learn from,
emulate and exploit artificial immune systems.
There are several competing theories as to how the human
immune system achieves the adaptability and flexibility that
allows it to function so effectively. The existence and
participation of the bone marrow, B-cells and T-cells in the
process is beyond dispute. The ways in which these entities
reproduce, clone and mutate is still a fertile field of study
for immunologists. Computer scientists have for many
years used evolutionary computing as a stock in trade (see

Goldberg 1989), and thus understand something of how to
deal with simulations of simple versions of these types of
activity. The added interest of the immune system is in the
mechanism that makes it so effective and so rapid in
adapting, more rapid than organism level evolutionary
adaptation.
Of the various mechanisms suggested, the network theory
(see Jerne 1974, Perelson 1989), still very contentious in
immunology circles, stands out as a tractable and familiar
way to try to improve upon the performance of the standard
genetic algorithm. AI has often resorted to networks of one
type or another as mechanisms that can be made to exhibit
emergent behaviour in a reliable, comprehensible and
visually presentable way. Thus we have been working with
models of immune systems based on network structures
with B-cells as the primary unit (see Timmis et al. 1999,
Timmis et al. 2000 and Timmis et al. 2001).

2 REAL AND ARTIFICIAL IMMUNE
SYSTEMS

At this point a brief summary of some of the relevant terms
and how they apply to real and artificial immune systems is
appropriate:
i) Pathogen: for the biological immune system a

pathogen is usually a foreign body such as a virus,
bactaerium, fungus or other parasite. For an
artificial immune system a complete data item
represents a pathogen.

ii) Antigen: a real antigen is a substance which elicits
a response from lymphocytes. These are often
toxins or proteins which are characteristic of
particular types of pathogen. In the artificial
immune system a field within a data item with a
particular value is comparable; as it is particular
values in particular fields which stimulate the
nodes in an artificial immune system.

iii) Lymphocytes: are the white blood cells in the real
immune system which are responsible for the
destruction of pathogens. B-cells and T-cells are
two types of lymphocyte. In our artificial immune
system B-cells are not represented individually,

mailto:mjn@aber.ac.uk

but gathered together using the concept of the
artificial recognition ball (ARB) as is described
below (see section 2.4).

iv) Innate versus adaptive immunity: innate immunity
does not change throughout the lifetime of the
individual and relies on different mechanisms from
adaptive immunity which is what we are
concerned with and wish to emulate in our
artificial immune systems.

2.1 INITIAL INNOCULATION
The adaptive human immune system is primed at a very
early stage in various ways including from the mother‘s
milk and via vaccinations. For the human these very early
additions to the immunological repertoire often mean the
difference between life and death. Clearly the ability to
bootstrap the immune system before any dangerous
pathogens are missed is an essential feature of any immune
system. Fortunately the effects of failure in AI systems tend
to be less drastic than in the human body, but nonetheless
the sensitivity of any immune system, real or artificial, to
its initial pre-programmed repertoire is of the utmost
importance. If it is necessary to pre-program with a very
large number of antigens, and the system is not capable of
dealing with antigens significantly different from those in
the initial innoculation then this is not satisfactory. In fact
the less that is necessary to begin with, the better.

2.2 PRIMARY RESPONSE
The primary response of an immune system is provoked
when an antigen not previously encountered is detected.
The bone marrow will generate a large number of B-cells,
in the expectation that some of them will be able to deal
with the infection, and will thus take over the production of
more and more effective antibodies. After the response has
cleared the infection, some of the more effective B-cells
produced will remain in the body ready to respond the next
time a similar infection occurs.
This part of the process is recognized as a learning phase in
which previously unseen patterns are stored for later recall.
The way in which the B-cells that remain in the system are
maintained, and do not die off is of fundamental importance
and is where the network theory provides one of several
possible answers.

2.3 SECONDARY RESPONSE
The secondary response is the response elicited when a
familiar antigen is detected. Those B-cells already present
in the body which are well adapted to dealing with the
antigen will reproduce very rapidly to deal with the
infection.
The secondary response can be seen as the recall phase in
the artificial immune networks presented.

2.4 THE IMMUNE NETWORK THEORY
The immune network theory proposes that the B-cells in the
body interact with each other to maintain the immune
memory. The mechanism proposed is that B-cells which are
capable of recognising similar (but not necessarily
identical) pathogens are also capable of recognising and
stimulating each other (see Farmer et al. 1986). Thus a
dynamic feedback mechanism can maintain parts of the
immunological memory which are not frequently
stimulated. Clearly however not all B-cells have sufficient
stimulation to survive indefinitely and thus some will die
out.
In the human immune system T-cells both perform a
surveillance role and interact with B-cells which
complicates the mechanism somewhat. In our artificial
immune system the role of T-cells is currently ignored.
In the real immune system there are very large numbers of
identical B-cells to deal with each type of infection. In an
artificial system such repetition can be coded without
representing all the identical cells individually. Fortunately
the concept of a recognition ball which represents a region
of antigen space that is covered by a particular type of B-
cell can replace the repetition of individuals (Perelson
1989).
So our AIS consists of a network of artificial recognition
balls which are linked together if they are close to each
other in antigen space. Pathogens (data items) can be
considered to be points in this antigen space, and thus
proximity can be defined as a simple distance function.
When a data item is presented to the network the node
which is the most stimulated produces clones of itself, some
of which are mutated to increase the diversity of the
network‘s recognition capabilities. The stimulation level of
each node is calculated based upon its reaction both to the
data items and to those nodes to which it is connected (see
section 4.1). Thus nodes which are severely mutated into
remote regions of the antigen space (and thus sparsely or
totally disconnected) will not survive unless they match
data items which are not presently covered by the network
in which case they will expand its repertoire.

3 BACKGROUND
In a previous publication (see Timmis et al. 2001) we
presented a resource-limited version of the AIS as a step
toward a continuous learning version of the AIS presented
in (see Timmis et al. 1999, Timmis et al. 2000). This
previous work was motivated by the need for an AIS that
did not rely on the arbitrary selection of the number of
times that a data set should be presented to it, and the
realisation that any AIS that did require such control was
not a good model of a biological immune system. There
were however several problems with the solution that we
proposed:
i) the mechanisms which governed the resource

allocation were centralised in a very artificial way,

which was contrary to the distributed nature of the
original AIS

ii) there was no “inertia” effect bound to the resources.
Thus an ARB could gain or lose all of its resources
in one pass through the network, which is quite
unlike the biological immune system which takes
time to build up immunity and time to lose it again.

iii) The nature of the calculations performing the
resource allocation required the normalisation of the
stimulation levels, which lead to some inelegant,
lengthy and unnecessarily complex calculations after
every iteration

iv) After several passes through the data set in question
the network would begin to degenerate and fail to
represent some of the data items

v) The algorithm did not lend itself to a genuinely
continuous mode of operation as resource allocation
was performed after each pass through the data set.
This required an epoch-based (synchronous update)
approach which creates a variety of problems if the
network is to be used in a continuous mode.

After several attempts to modify the resource allocation
mechanism it became clear that these problems were quite
severe and were leading to a complex and arbitrary set of
solutions. Thus a different approach was taken based on a
simpler mechanism used after every data item presented.

4 THE SSAIS
This new approach lead to the self-stabilising artificial
immune system (SSAIS) presented here. Artificial
recognition balls (ARBs) are still used as the basic
component of the network, and they are still linked together
in the same way. The network affinity threshold is also
calculated in the same way and serves the same purpose as
in the original systems. The SSAIS differs from the
resource limited artificial immune system (RLAIS) in
several ways. The most important difference is that there is
no fixed quantity of resources to be distributed centrally
between the ARBs. The concept of resources is still present,
but in an altered form. In the RLAIS the resources were
allocated to ARBs by order of and in proportion to
stimulation level. In the SSAIS resources are dealt with
locally by each ARB. An ARB increases its own resource
allocation each time it registers the highest stimulation for
an incoming data item. The ARB increments its resource
holding by adding its current stimulation level.
Additionally, each time a data item is presented the
resource level of every ARB decays geometrically. The
balance between the decay of the resource level and the
occasional boost received when an ARB “wins” is quite
robust, and results in more densely populated areas of the
data space supporting larger numbers of ARBs and more
sparsely populated regions fewer ARBs. This results in
emergent behaviour that is very similar to that of the
original AIS and the RLAIS, but without the “one shot”

constraint of the former and the normalisation, synchronous
update and sorting requirements of the latter.

4.1 THE STIMULATION FUNCTION
In order to bound the growth of the resource level in any
ARB (and thus in the network as a whole) it was necessary
to bound the stimulation level. The simplest way to achieve
this is to make a small modification to the ARB stimulation
function. The stimulation function in previous systems (see
Timmis et al. 2000) was made up of three components:
i) An excitation factor, ps based linearly on the

Euclidean distance to the current data item (p):
ps = 1 – dis(p)

ii) An excitation factor, ns based on the distance to
the neighbours around the ARB:

 n

ns = Σ 1 – dis(x)
 x=0

iii) A suppression factor, nn based on the distance to
the neighbours around the ARB:
 n

nn = - Σ dis(x)
 x=0

In all equations the function dis(a) returns the Euclidean
distance between the current node and the item a; and n
represents the number of neighbours at the current node.
These components are simply summed. The second and
third components are based on the neighbours of the ARB,
and there is no limit to the number of neighbours an ARB
can have. This poses a problem in the form of the potential
for unbounded growth. Two variants on this stimulation
function were experimented with. The first of which is the
most obvious and is simply the same as above, but with
parts ii) and iii) divided by the number of neighbours. This
succeeded in bounding the growth of the resource levels in
the network, but resulted in networks which had one
extremely dense and active region and other totally static
sections which were much less dense remainders of the
original network created from the initialisation data. In
order to examine this behaviour a second simpler function
was used with surprisingly effective results. The neighbour
suppression factor was discarded completely and only the
excitation retained. This resulted in a simpler stimulation
function made up of only two parts which are summed:
i) An excitation factor, ps based linearly on the

distance to the current data item:
ps = 1 – dis(p)

ii) A normalised excitation, ns factor based on the
distance to the neighbours around the ARB:
 n

ns = 1/n × Σ 1 – dis(x)
 x=0

When used within the scheme presented here, this function
yielded networks which attain a “dynamic stability” with all
parts of the network producing some clones (see below),
and varying their topology a little at a time, whilst retaining
the overall structure and distribution throughout the data
space.

4.2 ALLOCATING RESOURCES
In this version of the immune network algorithm, resources
are simply recorded as a numerical value associated with
each node. This number is used both to decide when to
remove a node from the network (when the resources fall
below a minimum threshold) and to decide how many
clones to produce (more resources implies more clones).
Whilst there is no longer a central notion of resource
availability, it is still appropriate to think of the ARBs being
limited by available resources. In this system the ARBs
allocate their own resources only when justified by reacting
the most strongly to a data item. The level of resources at
an ARB that is not the most stimulated by data item (i+1) is
geometrically decaying with each data presentation, thus:

R(a)(i+1) = dr × R(a)(i)

where R(a)(i) represents the level of resources present at
ARB a after the presentation of i data items and dr
represents the rate at which the resource level at an ARB
decays. The level of resources at the ARB which is the
most stimulated by data item (i+1) will be:

 R(a)(i+1) = dr × (R(a)(i) + SL(a)(i+1))
where SL(a)(i+1) represents the stimulation level of ARB a
(as defined in section 4.1) after the presentation of data item
(i+1). Thus when an ARB is the most stimulated for an
incoming data item it gives itself a boost in its resource
level. These two conflicting effects balance to ensure the
survival of ARBs that regularly have the highest
stimulation level and the gradual demise of those that do
not. The decay rate scalar dr provides an easy control over
the size of the networks produced. The values used for dr in
this work were 0.999 for the trivial data set and 0.9995 for
the Iris data. Some initial experimentation with these values
was undertaken which seemed to indicate that the value of
dr is a sensitive control for the size of the population.

4.3 POPULATION CULLING
After each data item is presented to the network any ARBs
that have resources less than a fixed threshold value (the
mortality threshold) are removed from the population. The
threshold value used in this work was 0.6 for all networks
regardless of the data set in use. This was an arbitrary
choice, and further work is required to ascertain the
sensitivity and range of values for this parameter. The
networks produced do not seem to be particularly sensitive
to the threshold at which nodes are culled. The values for
mortaility and the multiplier for the resource level for new
clones are also arbitrary and require further investigation.

4.4 CLONING MECHANISM
The cloning mechanism for the SSAIS is slightly different
from previous systems. When an ARB is the most active it
is allowed to undergo cloning. The ARB produces clones at
a rate which is proportional to the resource level at the
ARB. The number of nodes produced is calculated as
follows:
nc = R(a)(i)/(mortality × 10)
where mortality is the minimum resource level that a node
can have before being culled. This is because each clone
that is produced is assigned mortality × 10 resources from
the ARB‘s pool of resources. As each clone is produced its
data fields are mutated with a fixed probability (the
mutation rate). The mutation rate was fixed throguhout this
work at 0.1%. If the clone is mutated then it gives rise to a
new ARB with mortality × 10 resources. If it is not mutated
then the resources are returned to the parent ARB. The new
clones are incorporated into the network and the processing
of the data items continues.

4.5 THE ALGORITHM
Prior to the commencement of training the network an
initial innoculation of ARBs must be provided. For the
work presented here 10 ARBs were used to initialize the
network for the trivial data set, and 30 ARBs were used for
the iris data set. These numbers were used because they
represent 20% of the number of items in each data set. The
items from the data sets were simply every fifth one in
whatever order they happened to be. Initial experimentation
with different initial innoculations indicated no significant
difference in behaviour when using different sub-sets of
either data set.
Thus bringing all the above elements together, we can
summarise the continuous algorithm as follows:
i) Innoculate the network with a random set of ARBs
ii) present a data item to all the nodes
iii) find the node with the highest activation
iv) allow this node to increase its resource level
v) deplete resources at all nodes
vi) cull nodes with less than threshold resource level
vii) allow highest activation node to clone
viii) relink the network with new clones
ix) return to ii)

5 EXPERIMENTS AND RESULTS
Results for two data sets in two different modes are
presented. The first set of data consists of 50 two
dimensional data items arranged in two clusters (see figure
8a). This was designed as a development tool to allow
simple visualisation of ARB positioning in a well
understood data set. The second set of data is Fisher‘s
famous Iris data (see Fisher 1936) which provides a well

known benchmark data set with understood properties and
some more challenging characteristics. The data consists of
150 four dimensional data items belonging to three
categories, each of which represents a variety of Iris. A
principal component plot (see Everitt 1974) of the first two
principal components is presented in figure 8b. Both data
sets were presented to the AIS as continuous streams of
data which wrapped around each time the end of the data
set was reached. The first two experiments were carried out
using 20% of the data items as an initial innoculation and
thereafter presenting all the data items from the outset. This
type of analysis will be referred to from here on as
complete. The last two experiments took one of the clusters
from each data set and used 20% of this reduced set as an
initial population and then trained for 250,000 data item
presentations to demonstrate initial stability. Then the
remainder of the data set was introduced and the network
trained for a further 750,000 presentations to demonstrate
the new stable state with the increased repertoire. This type
of analysis will be referred to from here on as incremental.

5.1 COMPLETE ANALYSES
The complete analyses were carried out over 1,000,000 data
item presentations to demonstrate long-term stability. The
networks settle to a quasi-steady-state much more rapidly.

5.1.1 Trivial data
The networks produced for the complete analysis of the
trivial data set very rapidly settled down to two distinct
clusters of ARBs with the occasional appearance and
disappearance of small outlying clusters or singlets which
were rapidly culled (see figure 1). The network was
examined at a large number of points during training and
seemed to vary very little, although the addition and culling
of clones occurred throughout (see figure 2).

Figure 1: The network produced for the trivial data set after
30,000 data items have been presented

The size of the network settled down to between 40 and 55
quite rapidly. Variations in size and structure continued but
did not vary the basic structure of the network after
approximately 1000 data items had been presented and
processed. Slight variations in size and structure are due to
the stochastic nature of the network introduced by the
cloning and mutation mechanism.

Figure 2: Size evolution of the network running on the
trivial data set

The input space was densely populated in regions
containing high densities of data throughout training.
Regions of lower density outside the clusters of data were
either devoid of ARBs, or supported small clusters of 1,2 or
3 ARBs for brief periods. These appeared due to the
mutation of clones from the two groups.

5.1.2 Fisher‘s Iris data
This data set provides an interesting test for any data
analysis technique as it consists of one clearly separable
class of data (the Setosa class), and two slightly
intermingled classes (the Virginica and Versicolor classes).
A conventional Principal Component Analysis plot of the
data shows this quite clearly in figure 8b. The network
produced by the SSAIS after 350,000 data item
presentations is shown in Fig. 3.
The evolution of this network was allowed to run on for
1,000,000 data presentations in order to examine the long-
term behaviour of the network. The shape of the network
was examined at various points and after about 100,000
iterations there were no major alterations in structure with a
separate group for the Setosa class and an elongated group
for the other two classes.

Figure 3: Network produced for the Iris data after 350,000
data item presentations

Figure 4: Size evolution of the network running on Fisher’s
Iris data set.

 The long-term evolution of the size of this network is
shown in Figure 4. The trace shows very rapid growth
initially followed by gradual growth until about 150,000
iterations. Thereafter the network has a relatively stable size
that varies by about 20 nodes either side of 120. This steady
but dynamic behaviour is desirable as it indicates
continuing introduction and maintenance of diversity within
the network, whilst retaining reasonable coverage of the
data space over a very long period. The enduring shape of
the network can be seen in figure 5 which shows the final
state of the network after 1,000,000 iterations.

Figure 5: Network produced for Iris data after 1,000,000
data items have been presented.

Thus the networks produced throughout training on the Iris
data cover the data space well, and reflect the nature of the
groupings in the data.

5.2 INCREMENTAL ANALYSES
The incremental analyses were carried out over 1,000,000
data presentations in order to demonstrate the stability of
the networks in their new configurations. Typically the
behaviour of the networks settles down much more rapidly
than this.

5.2.1 Trivial data
For the incremental analysis of the trivial data set the
network was initialized with 5 of the 25 data items from the
cluster close to the origin (see figure 8). The network was
then trained for 250,000 data presentations with the
members of only that cluster. The data being presented was
then expanded to include the second group of data which is
centred around the point (0.8,0.8). The size evolution of the
network is shown in figure 6.
The network size can be seen to stabilise at the beginning of
training at a size of between 30 and 45 nodes whilst only
the first cluster of data is being used. The second cluster of
data is introduced after 250,000 iterations after which the
network takes about 200,000 more iterations to begin to
cover the new data cluster. Examination of the intermediate
networks produced shows little development of the network
into regions which cover the new data. This seems to be
due to the relatively confined region which the network
covers before the second cluster is introduced. This lack of
diversity in the network makes it unlikely that any mutated
clone with only a single mutated antigen will be close
enough to the new data items to survive. Thus the chance
generation of several clones into the same region is required
in order for the colonisation of the newly populated region

of input space to begin. Once a start has been made, the
new region is rapidly covered quite effectively. This is
shown by the increase in population size at 500,000
iterations. See figure 9 for network evolution.

Figure 6: Size evolution of the network running on the
trivial data set with introduction of second cluster at

250,000 iterations.

5.2.2 Fisher‘s Iris data
For the incremental analysis of Fisher‘s Iris data the
network was initialized with 10 of the 50 Setosa class (see
figure 8). The network was then trained for 250,000 data
presentations with members of only that cluster. The data
being presented was then expanded to include the other
classes of data (Virginicas and Versicolors) which form a
clearly distinct cluster. The size evolution of the network is
shown in figure 7.

Figure 7: Evolution of network size for incremental
analysis of Fisher‘s Iris data.

The network can be seen to have settled to a reasonably
constant size of between about 70 and 110 when training on
only the Setosa cluster (before 250,000 iterations).
Subsequent to the introduction of the second cluster of data
the network undergoes some fairly rapid changes. Initially
there is a short period (between 250,000 and 300,000
iterations) of decline in size of the network. Then there is a
period of quite rapid growth until about 450,000 iterations
after which the network settles down to a fairly steady size
of between about 105 and 130 nodes. Prior to the

introduction of the second group of data the network
consists of a single highly connected cluster of nodes. Upon
the introduction of the additional data the network spreads
out into a more complex structure before several chunks
split off from the initial cluster and reform into a second
large highly connected cluster. The ultimate shape which
the network assumes is very similar to that produced by the
complete analysis presented in section 5.1.2 (see figure 5).
Snapshots of the network evolution throughout the
incremental analysis are shown in figure 10.

6 DISCUSSION
The goal of this work was to create a genuinely stable,
adaptive and continuous AIS. The changes that were
introduced grew out of the realization that the shortcomings
of the RLAIS (Timmis et al. 2001) stem from two
fundamental problems: the nature of the resource allocation
mechanism and the explicitly non-continuous nature of the
epoch based update mechanism. The latter problem of
assuming that there was an obvious point at which to stop
presenting data items and perform an “update” was very
simple to deal with. This just involved re-examining the
algorithm and making sure that every operation could be
carried out after the presentation of every data item. Most
of the components of the system lent themselves readily to
this approach, and as the resource allocation scheme was
under scrutiny, problems with that aspect and the closely
related problem of when and how much to clone were
redesigned to fit the new regime. Successfully altering the
resource allocation scheme required a little more thought.
The fields of genetic algorithms and artificial life have
taught many lessons about the nature of emergent
behaviour in such systems, one of the most basic being that
decentralization of control mechanisms usually leads to
more interesting behaviour (see Johnson 2001). This led to
the (now obvious) idea of devolving resource allocation to
the ARBs, and adjusting the stimulation function to
facilitate this. Thus now the only centralized function is that
of choosing the winning ARB from the network. Finding
the winner locally in the network would probably be
possible, but unnecessarily complex and somewhat
pedantic, especially as it could be argued that the bone
marrow is a centralized controller of some importance in
the biological immune system. Other mechanisms which
allocate resources based on “local” winners were briefly
examined and may be the subject of further research.
The time lag between the introduction of a new region of
input data and the network covering the new region of the
data space is disappointing. This is especially evident in the
incremental analysis of the trivial data set. It seems clear
that this lag is primarily due to a lack of diversity in the
network. The network is slow to regain the diversity
required to cover the new region due to the mutation and
cloning mechanism, which is likely to produce mutations
with only one data field different from the parent ARB.
Thus it seems that examining more effective cloning and
mutation mechanisms for the primary response would be of
great interest. These are likely to involve an artificial bone

marrow that produces random antibodies when a poorly
recognized pathogen is detected.
Control of the size of the network is to some degree
removed from the domain of the user of the SSAIS, but
clearly not entirely. The number of ARBs with which the
network is initialized provides an initial point from which
the system can evolve and thus provides a short-term
control although the mortality constant and decay rate are
far more sensitive and control the long-term meta-dynamics
of the networks. The mortality constant provides a very
coarse control which is unlikely to be changed in practice.
The decay rate however provides a much finer control over
the size of networks produced. Precisely how the size of the
network relates to the decay rate will vary depending on at
least the density of the data points in the input space, and
the frequency of repetition of similar items. With fixed data
sets the latter of these is simply the number of items in the
set. The former is hard to measure, and its effect harder
still. Some type of automatic and dynamic control of the
decay rate would be extremely useful and remove a
potential fudge factor.

7 FUTURE WORK
A number of pieces of work will flow directly from this
approach to the construction of artificial immune networks:
i) The testing of the algorithm on some more

complex data sets from the real world. This will
enable some detailed comparisons with other
techniques to be made, as well as to verify that the
behaviour seen with the data sets presented here is
repeatable.

ii) Running the algorithm on a continuously varying
data source rather than fixed data sets presented
many times to examine the flexibility of the
representations formed and the rate at which the
networks can track varying input.

iii) Creating an efficient and well engineered
implementation of the algorithm. This will offer
some performance increases, although
performance has not proved to be a problem, as
well as providing a stable software platform on
which to base further experiments.

iv) Examining more realistic and intelligent cloning
and mutation mechanisms. There is evidence that
biological immune systems employ some very
well controlled and directed cloning and mutation
mechanisms, none of which are exploited here (see
Kepler et al. 1993). Significantly different and
potentially more useful behaviour could be
expected if some methods such as these were
applied.

8 CONCLUSIONS
The algorithm presented here generates networks of a
bounded size over an indefinite number of data
presentations and updates. The networks produced are
continually changing whilst retaining good coverage of the
input space and some diversity via the mutation mechanism
employed. No central control in the form of a resource
allocator is required which holds true to the distributed
nature of the networks under construction. The system also
has the advantage of being conceptually simpler than the
previous resource limited artificial immune system. The
dynamic stability displayed is a better model of the immune
system than previous work presented and shows great
promise for applications requiring analysis of continuously
changing data sets with minimal intervention in the learning
process.

Acknowledgments
Thanks to Jon Timmis for data, ideas and discussions.

References
B. Everitt (1974). Cluster Analysis, Heinemann, London.
J.D. Farmer, N.H. Packard (1986). The immune system,
adaptation and machine learning, Physica 22D, 187-204.
R.A. Fisher (1936). The use of multiple measurements in
taxonomic problems, Annual Eugenics, Part II 7, 179-188.
D.E. Goldberg (1989). Genetic algorithms in search
optimization and machine learning, Addison Wesley.
N.K. Jerne (1974). Towards a network theory of the
immune system, Annals of Immunology 125C, 373-389.
S. Johnson (2001). Emergence, the connected lives of ants,
brains, cities and software, Penguin Press, London.
T.B. Kepler, A.S. Perelson (1993). Somatic hypermutation
in B cells: an optimal control treatment. Journal of
Theoretical Biology, 164, 37-64.
A. Perelson (1989). Immune network theory,
Immunological Review 110, 5-36.
J. Timmis, M.Neal, J.Hunt (2000). An artificial immune
system for data analysis, Biosystems 55 (1/3), Elsevier,
143-150.
J. Timmis, M.Neal, J.Hunt (1999). Data analysis with
artificial immune systems, cluster analysis and kohonen
networks: some comparisons. In Proceedings of the
International Conference on Systems Man and Cybernetics,
IEEE, Tokyo, Japan,. 922-927.
J. Timmis, M. Neal (2001). A resource limited artificial
immune system for data analysis, Knowledge-Based
Systems 14, Elsevier, 121-130.

 Figure 8: a) Two-dimensional trivial data set

Figure 9: Network evolution during incremental learning
of trivial data set. Series evolves top left to bottom right.

b) Principal component plot of Fisher‘s Iris data. Setosa

 square, Virginica round, Versicolor triangular.

 Shots taken at 250,000,300,000, 400,000 and 450,000

Figure 10: Network evolution during incremental learning
of Fisher‘s Iris data. Series evolves top left to bottom right.

Shots taken at 500,000, 550,000, 600,000 and 700,000

Negative Selection: How to Generate Detectors

Modupe Ayara, Jon Timmis,

Rogério de Lemos

Leandro N. de Castro

Ross Duncan

Computing Laboratory
University of Kent at Canterbury,

CT2 7NF, U.K.
{moa2, j.timmis,

r.delemos}@ukc.ac.uk

Department of Computer and
Electrical Engineering

State University of Campinas, Brazil.
lnunes@dca.fee.unciamp.br

Advanced Technology and
Research Group

Self Service Strategic Solutions
NCR FSG Ltd., U.K.

ross.duncan@scotland.ncr.com

Abstract

The immune system is a remarkable and complex
natural system, which has been shown to be of interest
to computer scientists and engineers alike. This paper
reports an on-going investigation into the usefulness of
the negative selection metaphor for immune inspired
fault tolerance. Various procedures to generate
detectors for the negative selection algorithm are
reviewed and compared in terms of time and space
complexity for the production of competent detectors.
A new algorithm has been identified and implemented.
Experimentation was undertaken, and an analysis is
presented on the effectiveness of the various
algorithms. The outcome of this empirical analysis
reveals that trade-offs have to be made in the choice of
algorithm based on the time and space complexities, as
well as the detection rate.

1. INTRODUCTION
As engineering and computing problems grow ever
more complex, alternative sources of inspiration for
solutions to these problems are being sought by
computer scientists and engineers. Biology has been
seen as a fruitful resource of inspiration with the
creation of various biologically inspired techniques
such as genetic algorithms, neural networks, and swarm
systems (Bentley 2001). The immune system is now
receiving more attention and is slowly being realized as
a new biologically inspired computational intelligence
approach (de Castro and Timmis 2002). An intuitive
application of the immune system, and one that many
researchers have followed, is to create artificial systems
that have the ability to differentiate between self and
non-self states: where self could be defined as many
things, such as, normal behavior, normal network traffic
between computers, and so on.
The next section explores one way in which the
immune system allows for self non-self discrimination
(negative selection), and reviews some approaches in
artificial immune systems literature that have attempted
to model this process. The main problems with these

approaches are highlighted and a new algorithm has
been implemented in an attempt to overcome some of
these problems. The results presented in this paper
demonstrate that the proposed algorithm is equivalent
to the exhaustive algorithm for certain classes of
problems, and even outperforms it in some cases for
example clustered data. The fact still remains that none
of the algorithms is able to resolve all the inherent
problems associated with detector generation, thus
some tradeoffs have to be considered when choosing an
algorithm for generating detectors. The final section
presents some conclusions and directions for future
research.

2. USEFUL IMMUNOLOGY
The immune system is a remarkable and complex
natural defense mechanism. The immune system
responds to foreign invaders called pathogens. The first
line of defense is known as innate immunity: this is the
immune mechanism our bodies are born with (Janeway
1993). If the innate immune system cannot remove the
pathogen, then the adaptive (or acquired) immune
system takes over.
The adaptive immune system is made up of B and T-
cells, which are capable of responding to certain
antigenic patterns presented on the surface of
pathogens. Receptors on B and T-cells match antigenic
material and depending on the closeness of that match,
T-cells stimulate B-cells into rapid proliferation and
undergo affinity maturation.
Affinity maturation is a process by which stimulated B-
cells are driven to become better tuned to the antigen
responsible for initiating the immune response. This
enhances the quality of the response (Staines, Brostoff
et al. 1994). During affinity maturation, stimulated
antibodies undergo a somatic mutation with high rates,
termed hypermutation. The amount of mutation that a
B-cell will undergo is inversely proportional to how
well it matches the antigenic pattern: the higher the
affinity (match) the lower the mutation, and vice versa.
Production of antibodies from these B-cells then
ensues, which ultimately remove the antigenic material.

Viewed from a computational perspective, this is an
attractive learning mechanism and is one reason why
the immune system has attracted such interest.
Pertinent to this work is the maturation of T-cells: what
mechanisms are present to prevent the T-cells reacting
against the own cells of the body? If this breakdown
happens, it is known as an autoimmune disease. This is
in part prevented via a process known as negative
selection, that allows only the survival of those T-cells
that do not recognize self cells. T-cells are produced in
the bone marrow, but undergo a maturation process in
the thymus gland, after which they are allowed to take
part in an immune response. The maturation of the T-
cells is conceptually very simple. T-cells are exposed to
self-proteins. If this binding activates the T-cell, then
the T-cell is killed, otherwise it is allowed into the
repertoire. Cells that take part in an immune response
are known as immunocompetent cells.

3. ARTIFICIAL IMMUNE SYSTEMS
Artificial immune systems (AIS) are adaptive systems
inspired by theoretical immunology and observed
immune functions, principles and models, which are
applied to problem solving (de Castro and Timmis
2002). The important points of this definition are
inspiration and rationale. In this case, the main idea is
to develop problem solving tools that are inspired by
the immune system. Through the use of the negative
selection process described above, there have been a
number of works attempting at building artificial
immune systems for virus detection (Forrest, Perelson
et al. 1994), computer security (Forrest, Hofmeyr et al.
1996), (Hofmeyr and Forrest 2000) and hardware fault
tolerant systems (Bradley and Tyrell 2002). The
original work by (Forrest, Perelson et al. 1994), in
which the negative selection algorithm was proposed,
has been inspirational to almost all the research in the
AIS related to the computer security. More recently,
that work has also provided the basis for building fault
tolerant systems (Tyrell 1999). The basic idea of the
algorithm is to produce a set of change-detectors,
which can detect changes in what is considered normal
behavior of a system.

4. NEGATIVE SELECTION:

PRINCIPLES AND ISSUES
The negative selection algorithm is inspired by the
maturation of T-cells in the thymus gland (Forrest,
Perelson et al. 1994). The algorithm consists of two
stages: censoring and monitoring. The censoring phase
caters for the generation of change-detectors.
Subsequently, the system being protected is monitored
for changes using the detectors generated in the
censoring stage. However, this algorithm is reported to
be very time consuming (D'haeseleer, Forrest et al.
1996), (Wierzchoń 2000). The time taken to generate
the detectors is measured by the number of candidate

detectors that have to be examined before producing the
required number of competent detectors. It was
observed that the number of candidate detectors
increases exponentially with the size of the self-set, at a
fixed probability of not detecting non-self (Forrest,
Perelson et al. 1994). This implies that the time to
complete the process increases with the size of the self-
set. Furthermore, this process does not check for
redundant detectors. For minimizing these limitations,
some variations of detector generating algorithm were
developed: linear (D'haeseleer, Forrest et al. 1996),
greedy (D'haeseleer, Forrest et al. 1996), and binary
template (Wierzchoń 2000). Both the linear and greedy
algorithms run in linear time respective to the size of
the self and detector sets (D'haeseleer, Forrest et al.
1996). While the focus of the binary template is to
generate efficient non-redundant detectors rather than
minimizing the time to generate them. Work in
(D'haeseleer, Forrest et al. 1996) claimed that the
greedy algorithm manages to resolve this problem by
generating a complete repertoire of detectors.
 This paper includes the examination of time and space
complexities of these algorithms, which were
normalized for comparison. In order to cater for worst
case situations, all the earlier assumptions included in
the derivation of the original time and space
complexities were discarded. For a more detailed
comparison of several negative selection algorithms,
please refer to (Ayara, Timmis et al. 2002).

4.1 EXHAUSTIVE DETECTOR GENERATING

ALGORITHM
The exhaustive detector generating algorithm is the
original method proposed by (Forrest, Perelson et al.
1994). The algorithm attempts to construct a set of
competent detectors in the following way: (1) define the
self data; (2) generate a random candidate detector; and
(3) match each candidate detector generated with self
data. If it matches with any self data, it is discarded,
otherwise it is added to the collection of competent
detectors. A flow diagram of the algorithm is presented
in Figure 1 .

Self data (Ns)

 Collection of

competent
detectors

(NR)

no Generate
candidate
detector

 Match?

(NRo)

Reject

yes

Figure 1: Exhaustive detector generating algorithm.

The time complexity of the algorithm was derived
based on two factors: the time to generate a number of
candidate detectors (NRo) and the time to compare each
one of them with the population of self-data (Ns). The
space complexity depends on the self-population,
whose individual members are of length l. In
(D'haeseleer, Forrest et al. 1996), the authors derived
mathematical formulae to determine the computational
complexities of the original algorithm. These were
reviewed based on the following considerations: (1)
generalising alphabet size m from binary {0,1}, where
m = 2; and (2) the total number of candidate detectors
(NRo) that can then be generated is ml, where l is the
length of each individual detector string.
Time and space complexities for this algorithm are
presented in Section 7, while the empirical experiments
carried out with the algorithm using 8-bits binary data,
are presented in Section 6. The experiments confirm the
limitation observed by (Forrest, Perelson et al. 1994)
and (Kim and Bentley 2001), which is a costly
computation of generating detectors.
The results motivated the examination and proposal of
other algorithms to generate the set of candidate
detectors. They are the linear, greedy and binary
template algorithms. For the linear and binary template
algorithms, please refer to (D'haeseleer, Forrest et al.
1996) and (Wierzchon 2000), respectively. The greedy
algorithm will be analyzed in the following section due
to its advantages of being linear in relation to the self-
set as well as presenting a good coverage of non-self.

4.2 GREEDY DETECTOR GENERATING

ALGORITHM
The greedy algorithm improves upon the linear
algorithm through the elimination of redundant
detectors. Furthermore, it ensures that generated
detectors achieve as much coverage of non-self space as
possible (D'haeseleer, Forrest et al. 1996). The
algorithm is in two phases. The first is the processing
phase taken from the linear algorithm, with the second
phase being the actual process of generating detectors.
This algorithm is based on the use of schemata
proposed by (Helman and Forrest 1994) for the r-
contiguous bits matching rule. The r-contiguous bits
matching rule is a model of the affinity measure in the
immune system. Assuming a binary representation of
the self and detector strings, the r-contiguous bits
matching rule compares a sequence of bits (of length r)
in one string with a sequence of bits of the same length
in the second string to see if they match. This approach,
as shown in Figure 3, has been stated to closely capture
the interaction between elements in the immune system
(Percus, Percus et al. 1993). This is subject to a pre-
defined matching threshold r that is the minimal length
of contiguous bits strings common to the two strings for
a match to occur. Given this matching rule, the

schematic approach is to check for these common sub-
strings, as depicted Figure 2, rather than the whole
string.
 r = 4

 R: 0 1 0 1 1 0 1 0
 S: 0 0 0 1 1 0 0 1

Figure 2: r-contiguous bits matching rule. The strings R
and S of length l = 8, present r = 4 consecutive bits in

common.

Assuming a matching threshold r, an alphabet size m
(usually binary) and a length l, which is the length of
each string, the first phase involves the generation of
valid detector templates from a total number of mr

possible combinations. Templates are strings with r-
contiguous significant bits that start from a specified bit
position; and l - r insignificant bits replaced with don’t
cares. Each template is constructed from a sequence of
r bits that can be extended to fully specified detector
strings. The set of valid templates are based on the self-
data, such that only templates with no match in self are
generated. These templates make up the first template
array TS where the nonzero entries constitute the valid
templates.
During the second phase, detectors are generated
through the extension of the templates to fully specified
detector strings. After the generation of each detector
string, all the templates that match the detector are
removed from the set of valid templates for generating
detectors. This prevents the generation of redundant and
inefficient detectors at each step.
The time complexity of this algorithm depends on three
factors: (1) the time to generate each valid detector
templates in mr; (2) the time to extend each valid
template to a fully specified string; and (3) the time to
update the templates TR when creating each detector.
The original time and space complexities were derived
given these considerations (D'haeseleer, Forrest et al.
1996), but their corresponding mathematical formulae
were derived based on the assumptions that each
element of the template array can be evaluated in
constant time. Also, the analysis ignored the earlier
processing phases, before the valid number of detector
templates are derived. Additionally, emphasis on binary
alphabets can be extended to an alphabet size of m.
These were incorporated into the reviewed formulae in
Table 5.

5. NEGATIVE SELECTION WITH

MUTATION
Work in (de Castro and Timmis 2002) proposed a slight
modification of the exhaustive stage of the negative

selection, by introducing somatic hypermutation.
Briefly, the procedure proposed the following: (1)
define self data; (2) generate a candidate detector
randomly; and (3) match each candidate detector with
self data, if it matches, perform guided mutation on
detector away from self. The guided mutation is
performed on the candidate detector, which matches the
self data. Mutation is then performed on the parts of the
candidate detector that match with the self element. The
mutation is adaptive, based on the affinity of the closely
matching self element to a candidate detector. This
means that the probability of mutation is directly
proportional to affinity. Thus, the greater the affinity,
the higher is the mutation probability. This idea was
taken from the affinity maturation process of B-cells to
antigenic patterns in the immune system. In this
algorithm, however, the reference is the self-set, instead
of non-self set. Hence, the mutation is performed
proportionally to affinity to self-set, such that the
candidate detector is changed so as not to match self-
set. Also, this mutation approach was further
augmented by the introduction of a life time indicator
for a candidate detector. This in effect restricted the
number of times mutation is performed on a candidate
detector before a non-improved mutant is discarded. It
was thought to have the desired effect of reducing the
search space and hence, the number of candidate
detectors generated.
The time complexity of NSMutation depends on the
following factors: (1) the time to generate a random
detector (each of length l) and compare with the
population of self data to determine if they match; (2)
assuming the use of r-contiguous bits matching, time to
mutate matching region of length r in random detector
away from self; and (3) a check for redundant detectors.
In the worst case, possible detectors can be
generated when an alphabet size m is assumed. Hence

 candidate detectors are equivalent to . Also,
mutation is limited to a region of length r in the
candidate detector, which gives the upper bound of
mutating the candidate detector as . Subject to these
factors, the time and space complexities are given in
Table 5.

lm

RoN lm

rm

6. EXPERIMENTS
In order to verify the claims made in (Forrest, Perelson
et al. 1994) and (Kim and Bentley 2001) with regards to
the exhaustive algorithm, and additionally to test the
efficacy of the proposed algorithms, experiments were
undertaken using an 8-bit binary data test set. The
exhaustive algorithm was used as the empirical
standard for the experiments.

6.1 EXPERIMENTAL SETUP
The experiments were performed with randomly
generated 8-bits data, with the inclusion of relevant

parameters. The following subsections describe the
procedures carried out for experimental set up.

6.1.1 Generating self data
As earlier stated, the 8-bit data used were randomly
generated. The pseudorandom number generator of the
Java 2 Platform (Standard Edition version 1.3) API was
used to generate integer numbers between 0 and 255,
which were then converted to 8-bit binary strings.
During the experiments, there was a need to generate
different sizes of self set. This was carried out by
creating separate files for different population sizes of
self sets.

6.1.2 Setting the matching threshold
The affinity between these binary strings (for the self-
set, detector set and test data) was determined using the
r-contiguous bits matching rule. The optimal value for
matching threshold (r) had to be obtained by changing
values of r from 1 to l. This process was done in order
to obtain the combined values of correct and incorrect
classification by detectors generated using a specific
threshold. Correct classification value is derived from
the sum of true positive (rate at which non-self is
correctly detected) and true negative (rate at which self
is correctly not detected). While incorrect classification
is the sum of false positive (rate at which self is
incorrectly detected) and false negative (rate at which
non-self is not detected). Both the correct and incorrect
classification values are used to determine the
appropriate values of r. This is different from the
approach used by (Kim and Bentley 2001) as well as
the suggested method in (D'haeseleer, Forrest et al.
1996). In (Kim and Bentley 2001), the value of r was
determined from the equations in (Forrest, Perelson et
al. 1994), which yielded poor values of matching
threshold for the corresponding data. While
(D'haeseleer, Forrest et al. 1996) proposed an approach
based on the greedy algorithm. Both approaches reveal
that there is no hard-and-fast rule for setting this
parameter, rather various values can be tested in order
to select the optimal one. The following procedure was
carried out to determine this parameter:

1. Generate self and test sets from the data sets
being experimented upon;

2. Generate required detectors NR (using
equation: ()

m

f
R P

P
N

ln−
=) for different values of r

which are varied from 1 to l;
3. Test the detectors generated on the test file to

obtain their correct and incorrect classification
rates;

4. Use the value of r for which there is minimal
incorrect classification and maximum correct
classification rates in subsequent experiments.

An outcome of the procedure is illustrated in Table 1
based on the mean values of correct and incorrect
classification rates obtained over 10 trials using the
following parameters: self set NS = 8, test set NT = 256,
available (NR), and potential (NRo) repertoires. Given
this table, a matching threshold value of 8 will be
preferable to the other values since it yields maximum
correct and minimum classification rates. When the
matching threshold was set to values below 3, no
detectors could be generated. This indicates that at such
threshold values, all the detectors match the strings in
the self-set. The value of r thus determines the proper
partitioning of the data space into self and non-self
segments. This makes the choice of an optimal value
for r crucial to the effectiveness of the change-detection
function.

Table 1: Test for obtaining optimal value of matching

threshold (r)

r

NRo

NR

Correct
classification

rates

Incorrect
classification

rates
3 209.2 5 41.80% 58.20%
4 37.30 12 56.02% 43.98%
5 46.50 29 70.98% 29.02%
6 87.90 74 85.12% 14.88%
7 210.90 196 89.10% 10.90%
8 604.80 589 91.72% 8.28%

6.1.3 Mutation probability
The mutation probability (mutProb) is a threshold that
determines whether a bit position in a binary string will
be mutated or not. This value was initially implemented
using an adaptive mechanism which is calculated as the
length of the matching bits in two binary strings divided
by the length l of the binary string. The value generated
is a real number between 0.0 and 1.0. This threshold
value is then used to determine whether a bit position is
subjected to mutation. For each bit position to be
mutated, if a randomly generated number between 0.0
and 1.0 is less than the mutation probability, the bit is
mutated. The converse is the case when the random
number is greater than the mutation probability. In
(Ayara, Timmis et al. 2002), the adaptive mutation
probability was discovered to degrade the time
complexity of the algorithm if the probability is greater
than a specific value. This is because the probability
indicates that a sizeable fraction of the total number of
bits in a random binary string matches self. Hence the
process of mutating a random detector is restricted to
limited options. This can be explained by a matching
threshold r = 8. In this case, the mutation probability is
1 and the process of mutation just flips a random
detector to its image. In a situation that the image also
matches self, mutation flips back to the original
detector which also matches self. If this is the case for a

significant number of random detectors generated, the
time complexity is increased considerably. However
there is a threshold value below which this will not
occur. For example, the results of experiments in
(Ayara, Timmis et al. 2002) show that using 8-bits
binary data generated randomly the maximum mutation
probability that will not make the algorithm worse off
than the original exhaustive, for threshold values of 7
and 8, was confirmed to be 0.8. This directed the choice
of mutation probability for subsequent experiments,
which was set to 0.5.

6.1.4 Detector life-time indicator
The detector life-time indicator (mutLim) determines
the number of attempts that mutation can be performed
on a random detector. When values of this parameter
are greater than 1, it was found to increase the time
complexity of NSMutation when used with adaptive
mutation probability. This phenomenon can be linked to
the explanation given in section 6.1.3, which accounts
for the poor behaviour of the algorithm using adaptive
mutation probability. In a situation when the mutation
probability is above a specific value, and the limited
detector options that mutation can generate also match
with self, an increase in life-time indicator only extends
the time for the flipping the detector back and forth
between the image and the original detector.

Some definitions of terms used in the experiments are
listed in Table 2.

Table 2: Definitions of terms used in experiments

Terms Definitions

l Length of string

r Matching threshold

m Alphabet size

NS Population of self data

NRo Population of candidate detectors

NR Population of competent detectors

Pm Probability of detecting a non-self

Pf Probability of failing to detect non-self

NT Population of test data

mutProb Mutation probability

mutLim Mutation limit (Detector life-time
indicator)

6.2 THE BOTTLENECK FOR NEGATIVE
SELECTION

Given the earlier discussion regarding the constraint of
the exhaustive algorithm, i.e., the size of the set of
candidate detectors increases exponentially with the
size of the self-set, initial tests were performed to check
if this claim holds true for the proposed algorithm. This
process involved determining the number of candidate
detectors required to produce a specified number of
competent detectors when the population size of self is
increased progressively. The test was carried out with
both the NSMutation and exhaustive algorithm for
comparison.

Using the definitions provided in Table 2, the
mathematical equations for estimating Pm, NR, and NRo
(Forrest, Perelson et al. 1994), were employed for
implementing the algorithm.

The following procedures were carried out for
NSMutation algorithm:

1. For a particular data set, derive r (section 6.1.2)
for all runs of the experiment;

2. Calculate and select a desired value for ; mP fP

3. Determine the value of NR according to the
following equation: ()

m

f
R P

P
N

ln−
= ;

4. Set the values of mutProb and mutLim using the
guidelines in sections 6.1.3 and 6.1.4 respectively;

5. Execute steps a-c a number of times while
incrementing the size of NS, 8 ≤ NS ≤ 160. (The
selected value was 100 for trial runs):

a. Determine NRo experimentally by generating
random strings until valid detectors are
determined;

RN

b. Once a match occurs between a self string and
a candidate detector, or there is a duplicate of
the detector in the detector set, perform
uniform mutation in a guided manner until the
candidate detector becomes a competent
detector. The detector is then added to the set
of useful detectors;

c. The number of mutation attempts is limited by
a detector life time indicator (mutLim), which
is set to a fixed value.

This life-time indicator constrains the time expended to
change a detector that closely resembles self. In a
situation where a mutated detector is not improved by
the time the life-time has expired, it is discarded and
replaced by another random detector. The same process
was undertaken for the exhaustive algorithm, excluding
the mutation operator and the check for redundant
detector in the detector set. The potential repertoire size

(RoN - collection of candidate detectors before negative
selection) for both algorithms was recorded for
comparison. While the population of detectors
generated after negative selection, known as the
available repertoire size (), was set as a parameter
for the simulation. The results obtained from the
experiments are presented in Table 3 and Figure 3.
These results are obtained from 100 trials for each size
of the self-set, 8 ≤ N

RN

S ≤ 160, with the following
parameters NR = 589, r = 8, Pf = 0.1, mutLim = 4,
mutProb = 0.5. Each column of Table 3 holds values
calculated as a mean of the number of trials, while the
standard deviations are enclosed in brackets for each
mean value. Column (a) indicates the size of self set,
(b) holds the theoretical estimates of potential repertoire
(NRo), (c) the experimental NRo values for the exhaustive
algorithm, (d) experimental NRo values for NSMutation,
and (e) the mean mutation occurrence over 100 trials.
The results in Table 3 are selected from the outcome of
the experiments shown in Figure 3. From Table 3, it can
be clearly seen that the potential repertoire generated
for both algorithms are similar, for example when the
population size of self set is 152, the exhaustive and
NSMutation algorithms generate potential repertoire of
1128.16 and 1127.62 respectively. This explains the
overlap in the graphs of both algorithms. Also, column
(e) in Table 3 show that mutation occurs 1.807 ≈ 2
times out of 100 trials.
In order to determine the effectiveness of the
NSMutation in comparison to the exhaustive algorithm,
their detection rates were tested empirically using a
single population size of self NS = 8. Other parameter
values include NR = 589, r = 8, Pf = 0.1, mutLim = 4,
mutProb = 0.5, NT = 256. The outcomes of these tests
are presented in Table 4.
As shown in Table 4, the theoretical estimation of
potential repertoire size is calculated as 608.21, while
the mean potential repertoire sizes for exhaustive and
NSMutation respectively are 608.10 and 608.40. Their
corresponding detection rates are 90.36% for
exhaustive and 89.84% for NSMutation. Testing the
statistical difference between their detection rates using
the Z-test, gave a value of +0.085, which shows that
their detection rates are not statistically different.

Table 3: Experimental results generated from 8-bits data based on 100 trials for self set NS = 152, 160.

NS

NRo

(Theoretical)
NRo

(Exhaustive
algorithm)

NRo
(NSMutation

algorithm)

Mutation
Occurrence

(a) (b) (c) (d) (e)

152 1068.62 1128.16
(33.130)

1127.62 (31.739) 1.807 (1.020)

160 1102.61 1084.26
(32.344)

1091.14 (31.190) 1.768(0.992)

Chart showing the potential repertoire generated theoretically,
from exhaustive and NSMutation algorithms with 8-bit binary data

400
500
600

700
800
900

1000

1100
1200
1300

8 32 56 80 10
4

12
8

15
2

Population size of self

Po
te

nt
ia

l r
ep

er
to

ire
 (N

R
o)

Theoretical estimates of
NRo

Mean NRo from
exhaustive algorithm

Mean NRo from
NSMutation algorithm

Figure 3: Chart for 8-bits data that illustrates the theoretical estimates and mean population of potential repertoire

based on 100 trial runs for both algorithms given each size of self-set.

Table 4: Test results of detection performance of the
NSMutation and exhaustive algorithms over 10 trials.

 Exhaustive NSMutation

Theoretical NRo 608.21
Experimental NRo 608.10 608.40
Detection rates 90.36% 89.84%
Z-test value +0.085

7. ANALYSIS AND DISCUSSION
In this section, the output of the experiments performed
in section 6.2 are analyzed with the aim of discussing
the features peculiar to NSMutation and comparing
with the exhaustive algorithm in terms of tests
conducted. This comparison is then extended to the
other algorithms for an overview of all the detector
generating algorithms.

From the diagram of Figure 3, it can be observed that
the number of candidate detectors examined for the
exhaustive algorithm increases exponentially with the
size of the self-set. This confirms the limitation
expressed by (Kim and Bentley 2001). This behavior is
also exhibited by NSMutation, whose pattern of
increase in potential repertoire closely resembles that of
the exhaustive algorithm. This can be explained to be a
result of the random nature of the self set, which is
normally distributed. During the process of mutating a
candidate detector for the NSMutation algorithm, the
aim is to guide the candidate detector away from self
set. But since the self set is randomly distributed around
the search space, there is an equal probability of
mutating the random detector away from or towards
self set. Hence the impact of guided mutation cannot be
guaranteed for random data, and the outcome is more or
less a random generation of detectors. However, this is
not the usual case for a clustered self set with well-
defined boundaries. Preliminary experiments performed
in (Ayara, Timmis et al. 2002) to test this showed that
the potential repertoire is almost linear with increase in
the self set. Also refer to (Ayara, Timmis et al. 2002)
for the pseudocodes of all the algorithms.

The comparison of their detection rates in Table 4
further confirms the similarities. The difference in their
performance at detecting non-self was evaluated using
the Z-statistic at a significance level of 0.05%, and the
outcome showed that their detection rate performances
were not statistically different.

Although from Figure 3 it can be asserted that the
NSMutation algorithm behaves similarly to the
exhaustive, some extensive studies of the NSMutation
algorithm (Ayara, Timmis et al. 2002), provide more
information about some parameters of the algorithm
that control its performance. They include the matching
threshold (r), detector life-time rate (mutLim) and
mutation probability (mutProb). These parameters can
deteriorate its performance than its predecessor or
speculatively better, if a good combination of
parameters for the data set can be obtained. For
example, when r = l (length of each string), the effect of
the mutProb on the time complexity is more profound,
even though there is a higher chance of generating good
detectors due to the exact matching. The effect of
mutProb is aggravated by a high value of mutLim. For
example when l = 8, r = 8, mutLim = 4, and mutProb =
1.0, mutation of a non-competent detector produces its
image and if the mutant also matches self, further
mutation just flips the image back to the original
detector, thereby causing an alternation between the
image and the original detector. The mutLim parameter
thus causes this process to be carried out for a specific
number of trials. However, as r << l, the effect of
mutProb and mutLim pale into insignificance, since the
value of r already triggers high time complexity. This
parameterization factor for good performance of

learning algorithms has been observed by (Bentley,
Gordon T. et al. 2001). So the next question to be
answered is “what parameter values for the NSMutation
algorithm can make it outperform the exhaustive?”
Altogether, the reviewed and normalized time and
space complexities of all the algorithms, as shown in
Table 5, reveal the characteristics in terms of
computational complexity. While the time complexities
of the exhaustive algorithm and NSMutation are
exponential with respect to the size of self, the others
have time complexities that are linear functions of the
self. The linear algorithm, however, has the
disadvantage of generating redundant detectors, as is
the case with the exhaustive; this in turn limits its
performance. However, the greedy algorithm achieves
the best coverage for detection, due to the fact that it
generates complete repertoires of detectors as claimed
by (D'haeseleer, Forrest et al. 1996). The binary
template, which derives its inspiration from the greedy
also achieves similar coverage. Both greedy and binary
template algorithms have higher computational
complexity when compared to the linear algorithm. The
greedy algorithm includes the process of checking that
each detector generated represents a cluster of non-self
to prevent redundancy and also ensure that efficient
detectors are produced. Also the binary template
algorithm includes similar processes of removing
redundant detectors and ensuring that inefficient
detectors are eliminated. Hence, these additional
processes of guaranteeing non-self coverage and non-
redundancy incur extra time to complete the algorithms.
It must be noted that when the matching threshold r
approaches length l of each string in the search space,
the linear time complexities of the linear, greedy and
binary template with respect to the size of the self-set,
may exhibit similar behavior as that of the exhaustive
and NSMutation, due to the exponential value mr in
their time complexity equation.
In terms of space complexity, NSMutation has a higher
space complexity that the exhaustive. The reason for
this is that the NSMutation stores the detectors as they
are generated for comparison with subsequent detectors
in order to prevent redundancy. On the other hand, the
linear, greedy and binary template incur more space
complexity due to the storage of mr binary template
strings that are stored and updated. However the binary
template algorithm has a lower space complexity when
compared with the linear and greedy algorithms.
Another criterion for comparing the algorithms is the
coverage of detectors. This factor measures the extent
to which the detectors generated from the negative
selection algorithm are fully representative of the non-
self set. Thus it thereby provides a means of
determining the efficiency of the algorithm. If complete
coverage is to be achieved, it implies that all non-self
detectors must be generated. However, there is a need
to maintain a balance between the time taken to
generate detectors and getting a good coverage. This
balance seems to be best achieved by the greedy

algorithm. The algorithm is able to generate non-
redundant detectors that have high detection coverage,
at minimal time complexity.
In summary, it can be argued that the NSMutation is
more or else the exhaustive algorithm since they expend
similar time complexity and achieve as much coverage
of non-self. However, NSMutation differs from the
exhaustive algorithm because it includes checks for
redundancy and tunable parameters that can induce
different performance. When compared with the linear,
greedy and binary templates, the simplicity of
NSMutation makes it quite attractive as against the
others that entail cumbersome procedures. Furthermore,
only the exhaustive and NSMutation can be used with
other matching rules. The linear, greedy and binary
template algorithms are restrictive. They are limited to
the r-contiguous bits matching rule, which renders them
inextensible and inappropriate for other matching rules.
The benefits of NSMutation thus include simplicity,
high detection rate performance and extensibility.

Table 5: Reviewed time and space complexities of all
detector generating algorithms (refer to original
equations in (D'haeseleer, Forrest et al. 1996)).

Algorithm Time Space

Exhaustive O(ml.NS) O(l.NS)
Linear O((l-r+1).Ns.mr)+

O((l-r+1).mr)+
O(l. NR)

O((l-r+1)2.mr)

Greedy O((l-r+1).Ns.mr)+
O((l-r+1).mr.NR)

O((l-r+1)2.mr)

Binary
Template

O(mr.NS)+
O((l-r+1).mr.NR)

O((l-r+1).mr)+
O(NR)

NSMutation O(ml.NS)+O(NR.mr)
+O(NR)

O(l.(NS + NR))

8. CONCLUSIONS
This paper has made a comparison between the
different negative selection algorithms for generating
detectors, and implemented a variation of the initial
exhaustive algorithm. The results were presented using
the time taken to generate detectors, as well as the
detection rate coverage of the final detectors generated.
It has been demonstrated that there are trade-offs to be
made in deciding on the best algorithm for producing
the detectors. The exhaustive algorithm takes
considerable time (exponential in size of self data) and
produces redundant detectors; the linear algorithm has a
linear time complexity but also produces redundant
detectors; the greedy algorithm produces a complete
repertoire using up as much space as the linear

algorithm, but has a higher computational complexity;
the binary template produces a minimal set of efficient
detectors at the expense of more time complexity; and
finally NSMutation is similar to the exhaustive
algorithm with the difference of eliminating redundancy
and possessing parameters that can be optimized for
better performance. However for structured data sets,
the NSMutation has shown better performance in terms
of time complexity, but there is still need for further
verification. Thus, in a case where choice has to be
made between both exhaustive and NSMutation, the
latter has the advantages of possessing tunable
parameters, eliminating redundant detectors, and being
suitable for any matching rule. But, the decision lies
with the constraints being met while implementing the
algorithm in its target domain. Different domains place
emphasis on different constraints that must be satisfied.
These might include factors such as time to generate
detectors; space storage used by the detectors; matching
function; as well as the performance of detectors
generated. Since no algorithm has managed to minimize
all these constraints, trade-offs have to be made in
choosing an algorithm for generating negative selection
detectors. But it must be said that more analysis of the
NSMutation algorithm will need to be carried out in
order to determine the best combination of parameters
that can improve it significantly.

Acknowledgments

We would like to thank NCR FSG for their continued
financial support and valuable input into this research.
Leandro N. de Castro would like to thank CNPq (Profix
540396/01-0) for their financial support.
We gratefully acknowledge comments received from
anonymous reviewers.

References
M. Ayara, J. Timmis, et al. (2002). An Investigation
into Negative Selection for Change Detector
Generation, Technical Report, Computing Laboratory,
University of Kent at Canterbury, U.K.

D. W. Bradley and A. M. Tyrrell (2002). A Hardware
Immune System for Benchmark State Machine Error
Detection. Congress on Evolutionary Computation.
Part of the World Congress on Computational
Intelligence, 813-818, Honolulu, HI. USA, IEEE,.

P.J. Bentley. (2001) Digital Biology. Hodder Headline.

P. J. Bentley, T. Gordon, J. Kim and S. Kumar (2001).
New Trends in Evolutionary Computation. The
Congress on Evolutionary Computation (CEC-2001),
162-169, Seoul, Korea, May 27-30, 2001.

L. N. de Castro and J. I. Timmis (2002). Artificial
Immune Systems: A New Computational Intelligence
Approach, Springer-Verlag.

P. D’haeseleer (1996). An Immunological Approach to
Change Detection: Theoretical Results. IEEE Computer
Security Foundations Workshop, Dromquinna Manor,
County Kerry, Ireland, June 10-12, 1996.

P. D’haeseleer, S. Forrest, et al. (1996). An
Immunological Approach to Change Detection. In
Proc. of IEEE Symposium on Research in Security and
Privacy, Oakland, CA.

S. Forrest, S. A. Hofmeyr, et al. (1997). Computer
Immunology, Communications of the ACM, 40(10):88-
96.

S. Forrest, A. Perelson, et al. (1994). Self Nonself
Discrimination in a Computer. In Proc. of IEEE
Symposium on Research in Security and Privacy, 202-
212, Oakland, CA, May 16-18, 1994.

P. Helman and S. Forrest(1994). An Efficient
Algorithm for Generating Random Antibody Strings.
Technical Report CS-94-07, The University of New
Mexico, Albuquerque, NM.

S. Hofmeyr and S. Forrest (2000). Architecture for an
Artificial Immune System. Evolutionary Computation,
7(1):45-68.

C. A. Janeway (1993). How the Immune System
Recognizes Invaders. Scientific American: 41-47.

J. Kim and P. Bentley (2001). Investigating the roles of
Negative Selection and Clonal Selection in an Artificial
Immune System for Network Intrusion Detection,
Technical Report, Dept. of Computer Science, UCL,
London.

J. K. Percus, O. E. Percus, et al. (1993). Predicting the
Size of T-cell Receptor and Antibody Combining
Region from Consideration of Efficient Self-Nonself
Discrimination. National Academy of Science, 90:1691-
1695.

N. Staines, J. Brostoff, et al. (1994). Introducing
Immunology, Mosby.

A. M. Tyrrell (1999). Computer Know Thy Self!: A
Biological Way to Look at Fault-Tolerance. Second
Euromicro/IEEE Workshop on Dependable Computing
Systems, 129-135, Milan, Italy.

S. T. Wierzchon(2000a). Generating Optimal
Repertoire of Antibody Strings in an Artificial Immune
System. In M. Klopotek, M. Michalewicz and S. T.
Wierzchon (eds.) Intelligent Information Systems.
Advances in Soft Computing Series of Physica-
Verlag/Springer Verlag, Heidelberg/New York 2000,
Physica-Verlag, 119-133.

Anomaly detection using negative selection based on the r-contiguous
matching rule

Shantanu Singh
DaimlerChrysler Research Centre India Pvt. Ltd.,

137 Infantry Road,
Bangalore 560001,

India.
shantanu@rti.daimlerchrysler.com

Abstract

A series of observations of a system over time is
often used to characterize its normal behaviour.
The problem of anomaly detection is that of find-
ing deviations in the characteristics of the sys-
tem. Anomaly detection algorithms inspired by
the negative selection mechanism of the natural
immune system have been proposed. This paper
presents results obtained by employing an effi-
cient negative selection algorithm based on the r-
contiguous matching rule to detect anomaly in
various forms of data. The algorithm presented is
an extension of an existing detector generating
algorithm to deal with m-ary alphabet strings.
Results are obtained for three cases – assembler
instructions, system calls and simulated time se-
ries. Finally, conclusions of the study are pre-
sented and future direction of the work, currently
in progress, is indicated.

1 Introduction
The negative selection algorithm for anomaly detection is
inspired by the way the natural immune system generates
T-cells through a censoring process in the thymus. T-cells
have receptors that bind with proteins. Only those that do
not bind with self-proteins are released into the rest of the
body1. These T-cells then perform the role of detecting
non-self entities in the body by binding with them. To
extend the same principle to other systems, Forrest et al.
(1994) have proposed that the characteristics of the sys-
tem can be expressed in finite alphabet strings, with self
strings corresponding to normal behaviour and nonself
strings corresponding to anomalous behaviour. The
anomaly detectors that are generated would be those that
match any string not among the self strings. This method
of generating detectors is known as negative selection. In
this paper, we use the r-contiguous matching rule to de-
fine a match. Two strings are said to have an r-contiguous
match if they are identical in at least r contiguous posi-

tions. This partial matching rule is used since two strings
of a reasonable length rarely have an exact match. Wierz-
choń (2000) has investigated the discriminative ability of
this matching rule.

1 The process T-cell maturation also involves positive selection, wherein
only those T-cells that have an ability to interact with self major
histocompatibility antigens are selected.

Forrest et al. (1994) have presented a simple detector
generating algorithm which could be used with any
matching rule. D’haeseleer et al. (1996) have described
more efficient algorithms based on the r-contiguous
matching rule which run in linear time. The greedy detec-
tor generating algorithm (GDGA) (D’haeseleer et al.
1996) generates detectors which cover more non-self
space than other algorithms that have been proposed. This
algorithm has been defined for a binary alphabet.
In the present work, we introduce an algorithm that is an
improvement over GDGA. This algorithm handles strings
with higher alphabet size. It has the advantage of retaining
the semantics of the information present in the strings.
This is relevant in cases where a binary encoding of the
string would be undesired. For example, in strings con-
structed from system call data, it is necessary to retain the
uniqueness of the letters of the alphabet, where the alpha-
bet is defined by the set of all system calls.
Section 2 explains the extended algorithm. Section 3
presents the results obtained by this algorithm on simu-
lated time-series data, assembler instruction data and
system call data. A discussion on some observations is
presented in Section 4. Section 5 puts forth the conclu-
sions. Future direction of work is indicated in Section 6.

2 Extension of GDGA for Higher Alphabet
Size

The greedy detector generating algorithm (binary GDGA)
presented in D’haeseleer et al. (1996) uses a greedy heu-
ristic to achieve a better coverage of a nonself space. The
algorithm has been defined for a binary alphabet. Here, an
extension to the algorithm for a higher alphabet size is
presented. The following notation will be used :
A is the alphabet of size m.
s is a string composed of symbols from A.
ŝ is string s with its leftmost symbol removed.
s.x is string s with x ε A appended to it.

A template of order r is defined as a size l string consist-
ing of l-r unspecified positions and r contiguous symbols
(ε A). ti,s is a template with string s forming the fully
specified positions starting at position i.
The right (left) completion of a template is a template
string with the blank positions to the right (left) filled up
with symbols from A.
Two strings have an r-contiguous match if they are iden-
tical in at least r contiguous positions. Similarly, a tem-
plate matches a string if its fully specified positions are
exactly matched at the same positions in the string.
Arrays of dimensions mr·(l–r+1) are used for the creation
of detectors. The rows of these arrays are indexed by
strings composed of symbols from A. To get the numeri-
cal value of a string s, we give each symbol of A a unique
integer value in [0, m) and then consider s to be a number
expressed in base m number system.
Boolean arrays CS and CS΄ are based on the set of self
strings S. Integer arrays CR and CR΄ are based on the de-
tector set R.
CS[s][i] (CS΄[s][i]) is false if there are no right (left) com-
pletions of ti,s unmatched by any string in S and true oth-
erwise. CS can be calculated using the recurrence relation-
ship of its elements in the following way:







+=





=+−

∨
∈

+−

otherwise.,]1][.ˆ[C

Sin matched is if ,
]][[C

otherwise. ,
Sin matched is if ,

]1][[C

S

,

S

,1
S

ixs

tfalse
is

true
tfalse

rls

Ax

si

srl

CS΄ can be computed using a similar recurrence relation as
for CS.
CR[s][i] (CR΄[s][i]) is the number of right (left) comple-
tions of ti,s unmatched by any string in R.
The recurrence relationship for computing CR similar to
that of CS:







+=





=+−

∑
∈

+−

Ax

,

R

,1
R

otherwise.,]1][.ˆ[

Sin matched is if ,0
]][[C

otherwise. ,1
Sin matched is if ,0

]1][[C

ixsC

t
is

t
rls

S

si

srl

CR΄ can be computed using a similar recurrence relation
as for CR.
DS[s][i] = CS[s][i] ^ CS΄[s][i] is a boolean value which
specifies whether the template ti,s can be used for the
creation of detectors.
DR[s][i] = CR[s][i] x CR΄[s][i] gives the number of strings
in the current detector set that are unmatched by ti,s.
DR[s][i] is ‘valid’ if DS[s][i] is true..

To generate detectors, we pick the template corresponding
to the maximum valid element of DR. The remaining
blank positions of the template are filled up by traversing
the DR array to the left and to the right, and adding at each
step a symbol from A depending on which one represents
the valid template with the highest number of strings not
yet matched by the current detector set.
The CR and CR΄ arrays need to be updated to account for
the new detector added. This is done by zeroing those
elements of the arrays that correspond to templates pre-
sent in the detector and re-computing the elements which
are affected by this change.
The process is continued until all valid elements of DR are
equal to zero (which would indicate that the entire cover-
able non-self space has been covered by the detectors) or
a pre-specified NR number of detectors are generated.
This extended algorithm (m-ary GDGA) has the advan-
tage of not requiring the data to be represented in binary
form thereby retaining the information content of the
string.

Space Complexity
The dimension of the C and D arrays is mr·(l–r+1) While
the C arrays are binary and hence require a bit for each
element, the D array elements require to represent a
maximum value of ml-r, which would require (l–r) ·log2m
bits. Hence the space complexity of D arrays is
O(mr·(l–r)2) and that of C arrays is O(mr·(l–r)2).

Time Complexity
The time required for generating a detector is the sum of
(a) O(mr·(l–r)) to find the template corresponding to the
maximum valid element of DR, (b) O(m·(l–r)) to fill up
the (l–r) unspecified positions of the template, since there
are position requires considering the m possibilities and
(c) O(mr·(l–r)) for updating the C arrays. The time com-
plexity of the algorithm is hence O(mr·(l–r)·NR).

3 Results
The m-ary GDGA has been tested on three types of data –
time-series, assembler instructions and system call traces.
The behavioral patterns of each of the systems are ex-
pressed in strings of a finite alphabet by an appropriate
mapping. The results are compared with those of binary
GDGA.

3.1 Time Series Data
The application of negative selection algorithm to anom-
aly detection in time series data has been presented by
Dasgupta and Forrest (1996). First, time series data is
collected that adequately expresses the behaviour of the
system. The range of variation [MIN, MAX] of the data is
determined and the values are encoded in binary using a
pre-specified number of bits. Then a window of a size
appropriate to capture the semantics in data pattern is slid
along the binary encoded time series and the binary string

outlined by this window is stored as a self string. The
detectors are generated based on the resulting self strings
using the negative selection algorithm. In the present
scheme, we modify the encoding method by using an m-
ary alphabet instead of a binary one. For example, with
the rest of the procedure remaining the same, we may
choose to map each point in the time series into a set of
sixteen symbols corresponding to sixteen equally spaced
points in the range [MIN, MAX], thereby obtaining self
strings of a hexadecimal alphabet. Once the self strings
have been generated by this process, m-ary GDGA is used
to generate detectors.
The time series we consider the Mackey Glass series. The
Mackey-Glass equation is a time delay differential equa-
tion that has been proposed as a model of white blood cell
production. It is given by

)(
)(1

)(tbx
tx

tax
dt
dx

c −
−+

−
=

τ
τ (1)

The values of the constants a, b and c are generally taken
as 0.2, 0.1 and 10 respectively. τ is the delay parameter.
Normal data is computed using τ = 30 and anomaly is
introduced using τ = 17. Fig 1(a) shows the Mackey Glass
series with anomaly introduced in the region [500, 1000].
The self strings are generated for the normal data using
the encoding scheme discussed above and detectors are
generated for the same using m-ary GDGA. The strings
corresponding to anomalous data are then matched with
the detectors. A match would indicate the presence of
anomaly. The success of the algorithm in detecting anom-
aly is measured in terms of the percentage of anomalous
strings that are detected.
Table 1 illustrates the results for binary GDGA and m-ary
GDGA. Values for 1500 points of the Mackey Glass
series were computed using fourth order Runge-Kutta
method (Wan). Anomaly was introduced in the region
[500, 1000]. The data was encoded using five bits. Hence
the points were mapped to a set of thirty-two distinct
values.
The self strings used to generate detectors for binary
GDGA were a concatenation of four five-bit binary en-
coded data points. The m-ary GDGA used self strings
composed of four data points encoded in an alphabet of
32 symbols.
Each symbol of the 32-ary alphabet corresponds to 5
symbols of the binary alphabet. Hence the matching
length r = 10 for m = 2 can be compared with r = 2 for m
= 32. Comparing the success for NR = 100, we see that
there is a large difference in the success percentages (46%
and 19% respectively for binary GDGA and m-ary
GDGA). This can be explained as follows. The number of
strings matched by each detector is given by (Wierzchoń
2000)2:

])1()[(),(1 mmrlmrlD rl
m +−⋅−⋅= −−

 (2)

2 This formula is valid only for r ≥ l/2. A general method to calculate
this value is presented by Esponda and Forrest (2002).

D2(20, 10) = 6144 and D32(4,2) = 3008. Thus the number
of strings matched by a binary GDGA detector is more
than twice that matched by an m-ary GDGA one. This
results in a greater coverage by the former and thereby a
higher success rate. However, in m-ary GDGA, we retain
the semantics of the data unlike in binary GDGA where
the r-contiguous match takes place across boundaries (the
position between two 5-bit encoded data points defines a
boundary.)
Figures 1(b) and 1(c) show the performance of binary and
m-ary GDGA respectively with NR = 100. dS is the num-
ber of detectors which matched with a self string. The
height of the vertical lines in the graphs corresponds to
the number of detectors activated (dS) when anomalous
patterns were found. The dotted lines across the graphs
indicate the region of anomaly. The blank regions of the
graphs (dS = 0) indicate no detection of anomaly. This
may be either because anomaly does not exist in the
strings corresponding to those regions of the time series
or because the given set of detectors is incapable of de-
tecting the anomalous strings.

(a) Mackey Glass series for 1500 points. Anomaly is intro-
duced in the region [500, 1000] (indicated by the dotted
lines). (b) and (c) show the number of detectors, given by
height of vertical lines, that were activated when anomalous
patterns were found. The size of the detector set (NR) used =
100 and the self set size (NS) = 749. (b) is the performance
of binary GDGA and (c) is that of m-ary GDGA.

Figure 1: Performance of Binary and m-ary GDGA for
Detection of Anomaly in Mackey Glass Series

Table 1: Anomaly Detection in Mackey-Glass Series

Success
NR Binary GDGA

m = 2, l = 20, r =10
m-ary GDGA

m = 32, l = 4, r = 2

30
50

100
200

9%
17%
46%
70%

6%
7%

19%
37%

Encoding parameters

Win. size = 4 Win. shift = 2 Self size NS = 749

Success is the percentage of anomalous strings that are de-
tected. NR is the number of detectors being used. Alphabet
size (m) is the number of symbols in the alphabet being used
for encoding. Self length (l) is the number of symbols that
the self string is made of. Matching length (r) is the match-
ing threshold for the partial match. Win. size is the number
of data points that are concatenated (after being encoded) to
create the strings. Win. shift is the number of data points
that are slid across to get the next string. NS is the number of
self strings that are created.

It is seen that binary GDGA performs better than m-ary
GDGA in the case of anomaly detection in time-series
data such as the Mackey Glass time series. The detectors
generated by the former algorithm cover more string
space than that of the latter. This contributes to the better
performance of binary GDGA. However, m-ary GDGA
has the advantage of generating detectors for strings
which encode the system characteristics in an alphabet of
greater size. This would be relevant when there is a re-
quirement to encode data in a higher alphabet.

3.2 Assembler Instruction Data
When a virus attacks a binary file it results in the modifi-
cation of the file, which may be viewed as an anomaly in
the system. There are various ways in which viruses mod-
ify binary files. Here we consider two methods. The first
is a simple case of Single Mutation wherein a single in-
struction in the file is modified. The second is a more
complicated modification in which virus code is attached
to the file, resulting in the infected file becoming a source
of infection. Most viruses which affect executables are of
the second form.
To detect anomaly in binary files, the file to be protected
can be represented in the form of a string of assembler
instructions. The size of the alphabet is the size of the
instruction set. Self strings can be constructed in by slid-
ing a window across the assembler instructions in the
same manner as discussed in Section 3. Detectors are
generated for the resultant self strings which are used for
anomaly detection in the file.

The detection of anomaly in binary files modified by
single mutation and by a file infector virus are discussed
below.

3.2.1 Single Mutation
Tests were conducted for a C file compiled for a Pentium
processor3. gcc was used to generate the assembler code
from the C code using the –S option. The assembler in-
structions were extracted and strings were generated by
sliding a window across the trace. Detectors were gener-
ated for these strings. The assembly code was then altered
by changing a single instruction, and the strings thereby
generated were checked for anomaly. The m-ary GDGA
was used to generate detectors.
The success of these detectors in identifying anomaly is
shown in Figure 2. The most commonly used instructions
were taken as the alphabet, with size of 16.The results
were averaged over 1000 iterations. Each set had 3 detec-
tors. Considering multiple detector sets is relevant in the
case of a distributed system. There may be many nodes in
the system and each could be given a set of detectors. The
overall probability of anomaly detection increases with
greater number of detector sets.

Figure 2: Performance of m-ary GDGA on Assembly
Instruction Data

Alphabet size m = 16, win. shift = 2, matching length r = 2,
number of self strings NS = 35, number of detectors per set
NR = 3. Number of iterations = 1000.

The effect of varying the window size, and thereby the
string length, is demonstrated in Fig 2. Increasing the
string length while keeping the window slide value and
matching length constant results in an increased success
rate. This is because a detector of greater length covers a
greater area of non-self, the matching length remaining

3 The method of creation of strings is given in the appendix.

the same. However, the number of holes, or non-
coverable non-self space (D’haeseleer 1996) increases as
well.

3.2.2 File Infector
File infector viruses attach themselves to executable code.
They activate when an infected file is run, and then usu-
ally remain in memory. Thereon any non-infected execu-
table that runs becomes infected.
A test virus was generated using a commonly available
virus creation tool known as Instant Virus Production Kit
(IVP). The virus was programmed to infect mem.exe, a
DOS executable. The description of this process is given
in the appendix.
The self set was created by disassembling the executable
and sliding a window of size four across the trace of as-
sembler instructions, moving in steps of two, as in Section
3.3.2. Detectors were created for the self strings. The
executable was then infected using the test virus, and the
strings generated from the infected file were matched with
the detectors to check for the presence of an anomalous
sequence.
Table 2 shows the performance of binary and m-ary
GDGA. The process of testing was as follows. First, a
large pool of detectors (1000) was created for the 4854
self strings corresponding to the uninfected mem.exe.
Then a given number of detectors were randomly chosen
from the pool and were used to detect anomaly in the set
of strings corresponding to the infected file. The results
are averaged over 1000 iterations.

Table 2: Anomaly Detection in Assembler Instruction
Data

ND
NR

binary GDGA m-ary GDGA

10 0 0

50 1 2

100 3 4

200 6 7

500 14 18

Parameters

NS = 4854 Win. Size = 4 Win. Shift = 2

NR is the number of detectors. ND is the number of
anomalous strings that were detected by the NR detec-
tors. NS is the number of self strings. The number of
anomalous strings was 151. The results are averaged
over 1000 iterations.

Although the detectors do not detect the total number of
anomalous strings (=151), the presence of at least one

anomalous string would indicate a modification in the
file. For self sets which vary over time, a threshold value
for the number of allowable anomalous strings could be
set. If the number of anomalous strings detected exceeds
this threshold value then the system may be deemed to
contain anomaly.
The table demonstrates the relative performances of bi-
nary and m-ary GDGA. The performance of m-ary GDGA
is marginally better than that of binary GDGA. This indi-
cates the advantage m-ary GDGA has when the informa-
tion is encoded in a higher alphabet.
The size of the alphabet (=147) considered here is much
larger than that considered in Section 3.3.1. This results in
a lesser fraction of area being covered by these detectors
compared to the detectors of smaller alphabet. To illus-
trate this, we calculate the area covered by the detectors
generated in Sections 3.3.1 and 3.3.2, using Equation (2),
and divide it by the area of the total string space. In both
cases, four instructions are concatenated to make a self
string, and the window slide value is two. The matching
length, measured in number of instruction, in both cases is
two. The alphabet size, m, of detectors R1 in Section 3.3.1
is 16 and of detectors R2 in Section 3.3.2 is 147. Using
Equation (2), we have D16(4, 2) = 736 and D147(4,2) =
64533. The fraction of the total string space covered by
R1 is 736/164

 ≈ 1.12e-2 and that by R2 is 64533/1474 ≈
1.38e-4. Hence the accuracy of anomaly detection of R2 is
substantially lesser than R1.

3.3 System Call Data
The efficacy of short sequences of system calls as dis-
criminators for several types of intrusion has been dis-
cussed by Forrest et al. (1996) and D’haeseleer et al.
(1996). Here we present results of using binary and m-ary
GDGA to detect anomaly in a system call trace of a Tro-
jan code4 for login (UNM).

3.3.1 Intrusion detection based on login system call
trace

Login is a program used when signing into a system. It
is also used to switch from one user to another. Here, the
trace of system calls issued by login are used to classify
system behaviour. An anomalous behaviour would be
indicative of a possible intrusion in the system.
A normal login trace (LoginNormal) was used to col-
lect the behavioral patterns of legitimate usage of the
program. The data contain pairs of values in the form
(pid5, system call). Strings were created by sliding a win-
dow of size four across system calls with the same pid,
with windows shift value as two. Detectors were gener-
ated for these strings using m-ary GDGA. Then similar

4 A Trojan code (Trojan Horse) has been defined by Dan Edwards as “a
malicious, security-breaking program that is disguised as something
benign.” (Foldoc).
5 Since there may be multiple processes created by a single program, it is
required to indicate the process ID (pid) as well.

strings were constructed for a Trojan version of login
(LoginRecovered) and were checked for anomaly using
the detectors previously generated. The results are pre-
sented in Figure 3(a).
The data considered in Fig. 3 is the trace of system calls
with the pid of 801 from LoginRecovered. The trace con-
tained 386 system calls, from which 192 unique strings
were constructed. The x-axis measures the position of the
anomalous string in units of system calls. The height of
the vertical lines corresponds to the number of detectors
that matched with anomalous strings. Hence the lines in
the region [0,14] indicate that anomalous behaviour is
detected in the first fourteen system calls

Figure 3: Performance of m-ary GDGA on System Call
Trace of Trojan Version of Login.

(a) anomaly detection by m-ary GDGA detectors. Alphabet
size m = 164, win. size = 4, win. shift = 2, string length l =
4, matching length r = 2 (b) anomaly detection by binary
GDGA detectors. Number of bits used to encode a system
call nb= 8, win. size = 4, win. shift = 2, string length = win.
size x nb = 4 x 8 = 32, matching length r = 8.

Number of self strings from which detectors were generated,
NS =178. Number of detectors NR = 89. Number of strings
constructed from the anomalous trace = 192.

Figure 3(b) demonstrates the performance of binary
GDGA on the same data. The 164-symbol alphabet was
encoded in 8 bits. The binary encodings of four con-

tiguous system calls were concatenated to form thirty-
two bit strings. It is seen that more detectors are
matched in 3(b) compared to 3(a). The explanation for
this has been given in Section 3.1.

3.3.2 False positives
We consider here the occurrence of false positives in the
detection of anomaly in system call data using binary and
m-ary detectors.
LoginNormal consists of seven relevant traces. An ex-
haustive detector set is generated for each of these traces.
The detector set corresponding to a trace is then matched
against the strings corresponding to the entire LoginNor-
mal trace. The number of system call sequences tagged as
anomalous by these detectors is noted. Since the each of
the traces that are checked for anomaly are normal data,
the detection of anomaly in them would be a false posi-
tive. Table 3 shows the occurrence of false positives in
anomaly detection using binary and m-ary GDGA detec-
tors.

Table 3: False Positives in Anomaly Detection in System

Call Data Using Binary and m-ary GDGA

binary GDGA m-ary GDGA
Trace
PID

F.P. Exh.
NR F.P. Exh.

NR

19563 220 242 74 130

2188 109 238 74 130

4938 109 238 74 130

509 109 238 74 130

598 109 238 74 130

8954 192 232 72 129

9280 109 238 74 130

Trace PID is the process ID of the trace based on which the
detectors have been generated. F.P. is the number of false
positives, or number of (normal) system call traces which
were flagged as anomalous. For each case, the detectors
were matched against the entire LoginNormal trace to find
the number of false positives. Exh. NR is the size of the ex-
haustive detector set.

Win. size = 4. Win. shift = 2. Alphabet size m = 164. Size of
LoginNormal trace = 5937.

An exhaustive detector set is considered so as to present
a definitive measure of false positives. As is seen from
the table, m-ary GDGA detectors have a lower count of
false positives that binary GDGA detectors. This is due
to the retention of semantics of the data by m-ary
GDGA.

4 Discussion

4.1 Situation favouring m-ary GDGA
The utility of m-ary GDGA in detecting anomaly in vari-
ous forms of data has been presented in Section 3. m-ary
GDGA would be preferred when a binary encoding would
result in a loss of information content of the data.
In some cases, even when data originally encoded in a
higher alphabet is considered, binary GDGA may perform
better than m-ary GDGA6. However, as is explained be-
low, this occurs when the difference between alphabet
size m and the next highest power of two is small. For
higher values of this difference, m-ary GDGA would
perform better.
It was seen is Section 3.1 (time-series data) that binary
GDGA had a better performance than m-ary GDGA. The
alphabet size considered was thirty-two. Hence five bits
were used to encode a symbol, which were then concate-
nated to create binary strings of length twenty. In general,
if the alphabet size is m and the m-ary string length is l,
then the binary string length lB would be given
by l . When m is a power of two then each of
the binary strings would be valid (self or non-self)
strings. However, if m is not a power of two then there are

strings which are invalid, i.e., they do not corre-
spond to any point in the unencoded space. However,
binary GDGA cannot distinguish between an invalid
string and a non-self string. Hence detectors are generated
to cover the invalid string space as well. When is
small then this detector ‘wastage’ is small. However, for
larger values, this may present a problem. In other words,
when the value of m is significantly lesser than the next
higher power of two, then the number of invalid binary
strings is higher, resulting in a lower performance of
binary GDGA compared to m-ary GDGA (which does not
encounter this problem). This behaviour is seen in Section
3.3 (assembler instruction data), where m = 147, which
results in the size of invalid binary string space to be
nearly eight times the valid space.

  lm
B

⋅= 2log2
Bl2

lmB −l2

ll mB −2

To counter the problem of wasted detectors, the invalid
string space may be included into the self space so that
detectors are not created to cover that space. However,
this once again would pose a problem, since the size of
invalid space may be many times the valid space, as was
seen in the previous example.

m-ary GDGA allows retaining the original encoding of
data. Hence the problem of invalid strings is not encoun-
tered. The utility of m-ary GDGA would be higher in
these circumstances.

6 To create self strings from this m-ary data for binary GDGA to operate
upon, each symbol of the m-ary alphabet can be encoded into a binary
string of length log2m.

4.2 Choosing the matching length
For a given self set of size NS, string length l and detector
set size NR, the matching length r can be chosen experi-
mentally so as to maximize accuracy of detection.
For a given matching length r, detectors of a given num-
ber are generated and are matched against the entire non-
self set. The number of undetected non-self strings NN’ is
noted. The optimum value of r would be that correspond-
ing to least value of NN’.
A smaller value of r would enable a detector to cover
more non-self space (as can be seen from Equation 2) and
hence would be expected to result in a lower value of NN’ .
However at the same time, the number of holes, NH , in
the space also increases, thereby increasing the number of
strings that are undetectable by the given set of detectors.
Hence the optimum value of r can be found by noting the
point at which the value of NN’ reaches the minima.
The disadvantage of this method is that it is computation-
ally expensive. However when the non-self set is not very
large, this method can be used.

5 Conclusions
The negative selection algorithm has the advantage of
distributability. Any subset of the complete detector set
can be used for anomaly detection. This is useful when
there are multiple anomaly detection nodes.
The performance of the m-ary GDGA has been studied. It
has the advantage of retaining the semantics of the data.
This is particularly relevant to system call data and as-
sembler instruction data where a binary encoding of the
data would result in a loss of the semantics of informa-
tion. Its disadvantage is its greater time and space com-
plexity compared to binary GDGA.
The lesser number of false positives in the case of m-ary
GDGA compared to that of binary GDGA indicates the
better performance of the former when the original encod-
ing is non-binary.
The usage of m-ary GDGA is particularly advantageous
when the value of alphabet size m is significantly lesser
than the next higher power of two.

6 Future Work
Current work is in the direction of evaluating the utility of
negative selection to various data (Kim and Bentley
2001). An equivalent ‘positive selection’ method is being
used for this evaluation, wherein the entire set of self
strings is used for anomaly detection based on the r-
contiguous matching rule.
An understanding of the r-contiguous distance and its
related space would be important in creating an improved
detector generating algorithm. The possibility of embed-
ding the r-contiguous space into Euclidean space (Bour-
gain 1985) is presently being studied for the purpose of

visualizing the former space, and for borrowing ideas
from coverage algorithms developed for Euclidean space.

Acknowledgments
The present work has been performed as part of an under-
graduate project work at the DaimlerChrysler Research
Centre India Pvt. Ltd., Bangalore. The author wishes to
thank Akash Narayana, Dr. R. Raveendran and Dr. Shan-
mukh Katragadda for their valuable guidance, supervision
and encouragement. The author is grateful to Dr. Roland
Haas for having offered this opportunity and for the en-
couragement and support during this work.

References
J. Bourgain (1985) On Lipshitz Embedding of Finite
Metric Spaces in Hilbert Space. In Israel J. Math. 52, pp.
46-52.
S. Forrest, A. S. Perelson, L. Allen and R. Cherukuri
(1994) Self-nonself discrimination in a computer. In Pro-
ceedings of the 1994 IEEE Symposium on Research in
Security and Privacy, 202-212. Los Alamitos, CA: IEEE
Computer Society Press.
S. Forrest, S. A. Hofmeyr and A. Somayaji (1996). A
sense of self for unix processes. In Proceedings of the
1996 IEEE Symposium on Research in Security and Pri-
vacy, Los Alamitos, CA: IEEE Computer Society Press.

D. Dasgupta and S. Forrest (1996). Novelty detection in
time series data using ideas from immunology. In ISCA
5th International Conference on Intelligence Systems,
Reno, Nevada
P. D’haeseleer, S. Forrest and P. Helman (1996). An
Immunological Approach to Change Detection: Algo-
rithms, Analysis and Implications. In Proceedings of the
1996 IEEE Symposium on Computer Security and Pri-
vacy, IEEE Press.
S. A. Hofmeyr, S. Forrest, and A. Somayaji (1998). Intru-
sion detection using sequences of system calls. Journal of
Computer Security, 6:151-180
S. T. Wierzchoń (2000). Discriminative power of the
receptors activated by k-contiguous bits rule. Journal of
Computer Science and Technology. Special Issue on Re-
search Computer Science, vol. 1, no. 3, 1-13.
J. Kim and P. J. Bentley (2001). Evaluating Negative
Selection in an Artificial Immune System for Network
Intrusion Detection. Genetic and Evolutionary Computa-
tion Conference 2001 (GECCO-2001), San Francisco,
pp.1330 – 1337.
F. Esponda and S. Forrest (2002). Detector Coverage
under the r-contiguous bits matching rule. University of
New Mexico Technical Report TR-CS-2002-03.
Websites:
UNM, Computer Immune Systems, Data Sets, http://www.cs.-
unm.edu/~immsec/data/login-ps.html

LoginNomal,http://www.cs.unm.edu/~immsec/data/login-
live-unm.tar.gz
LoginRecovered,
http://www.cs.unm.edu/~immsec/data/login-recovered.in-
t.gz
E.Wan, Time Series Data, http://www.ece.ogi.edu/~eric-
wan/data.html
HofmeyrStide:http://www.cs.unm.edu/~immsec/software/
Foldoc, http://foldoc.doc.ic.ac.uk/foldoc/.

Appendix
(a) Creation of m-ary strings from C code.
m-ary strings are created from a given C code (sfile.c)
using the following piped sequence of commands:
gcc -S - sfile.c -o tmp/sfile.s ;
cat tmp/sfile.s |
sed -n 6~1p |
cut -f2 |
cut -d" " -f1 |
grep -v "[:|\.]" > tmp/sfile.log

The file sfile.log now contains the sequence of assembly
instructions corresponding to sfile.c. This file is then
converted to a sequence of m-ary strings by a replacing
each instruction with a unique identifier, and then sliding
a window across this data.
(b) Virus creation using Instant Virus Production Kit
Instant Virus Production Kit (IVP) is a virus creation tool
that can be used to create viruses by specifying certain
parameters. A configuration file is used which has pa-
rameters such as given below:
• Infection type. exe, com, both, trojan.
• Overwriting or appending upon infection.
• ID the virus uses for checking for infection.
• Encryption.
• Change Directories.
• Set the INT24 handler.
• Max number of files to infect at runtime.
• Time based activation options.
IVP generates a self-propagating virus assembly code
based on these parameters. The code is compiled, linked
and then executed to infect a dummy executable file. This
dummy file becomes the source of infection
This tool was used to create a virus which was customized
to infect mem.exe by specifying the name of this file in
the search string of the virus.

Self-Assertion versus Self-Recognition: A Tribute to Francisco Varela

Hugues Bersini
IRIDIA-CP 194/6

Université Libre de Bruxelles
50, av. Franklin Roosevelt
1050 Bruxelles – Belgique

bersini@ulb.ac.be

Abstract

Ten years ago, a group of researchers, led by
Francisco Varela, were proposing an alternative
vision of the immune system main behavior and
function. I was part of this group. This new
vision saw the immune system not as behaving
distinctively with self and non-self or according
to any dichotomy imposed a priori and from
outside (the self-recognition vision), but rather as
behaving in a unique way. From this indifferent
behavior, any external impact would
progressively been treated in two different ways,
reactive and tolerant, but now, consequently and
from inside the system (the self-assertion view).
This paper will recall, through a very artificial
simulation, the difference existing between these
two visions. Also at that time, we believed that,
from an engineering perspective, this new vision,
emphasizing more the adaptability and the need
for endogenous constraints than the recognition
and the defensive ability, although less obvious
to accept than the classical defensive one, should
be more beneficial. These last ten years proved
that we haven’t been convincing enough, and in
this paper I resume the crusade.

1 INTRODUCTION
Ten years ago, Varela, Coutinho and Stewart (Varela et
al., 1988; Varela and Coutinho, 1991; Stewart, 1994)
were proposing and defending a new vision of the
immune system, largely in the continuation of Jerne’s
intuition and model (Jerne, 1974), in which the “self” and
“foreignness” dichotomy collapses, for the system is
complete unto itself. Based on simulations of the immune
idiotypic network and some experimental data, they
published several papers, although not in the mainstream
journals of immunology. In an idiotypic network, there is
no intrinsic difference between an antigen and an
antibody, and any node of the network can bind and be
bound by any others. My role is this group was two-fold.
At that time not a biologist and still not today, I was
responsible with Vera Calenbuhr and Vincent Detours for
the development of a series of computer simulations that
have been described in (Detours et al., 1994; Bersini and

Calenbuhr, 1996; Calenbuhr et al., 1996). I was also
responsible for trying to initiate the influence of this new
“reading” of this biological system for the conception of
engineering artifacts. A mission I tried to fulfill in
(Bersini and Varela, 1993; Bersini, 1999).
Although we pushed hard for this alternative vision, we
need to admit today that the classical view of the immune
system as a defensive system, first able to distinguish
between dangerous and innocent external impact, and thus
to defense against the dangerous ones, has been the most
influential one from an engineering perspective. It was
clearly the most appealing to adopt, but it’s a pity. First,
this is a vision that is facing more and more opposition
among the biologists themselves. But beyond that, I am
convinced that we don’t need to know how the immune
system distinguishes, if it does so, between good and bad
stimuli, in order to build performing two-classes
classification system or any pattern recognition
mechanism. Also, we don’t need to know how the system
creates good markers of self, if it does so, to build
performing clustering and self-organizing systems. And
finally, we don’t need to know how the system protects
the body from external damages, if it does so, to build
good protective system for computers. The Panda
antiviral system that by computer has adopted for one
year now is one good illustration, among many, of that. I
don’t believe the developers of such effective software
needed to know anything about how the immune system
fights natural virus to develop their system for artificial
ones.
In the first section, largely relying on a recent excellent
survey of the Stanford Encyclopedia of Philosophy
(Tauber, 2002), I will try to summarize what main lines of
criticisms attack the vision of immune system as able to
distinguish self from non self and able to protect from
non-self. In the second section, I will present a very
simple software simulation that will make easier to
understand the difference between the self-recognition
and the self-assertion views. This simulation is very
reminiscent of a lot of simulations that we published years
ago, although I’ll try to simplify it to the basics in order to
really shed the light on the key differences.
Finally, the last section will try to defend why the self-
assertion view should inspire in a more creative way the
conception of engineering artifacts. This vision leads to
strongly adaptive systems, both parametrically and

structurally, but whose adaptability mainly aims at
satisfying endogenous constraints instead of responding to
exogenous impacts. This constraint satisfaction might
provide the system with several adaptive advantages as,
for instance, the capacity to respond to a large diversity of
external stimuli and to memorize in an economical way a
repertoire of adapted responses when facing a non-
stationary environment.

2 THE PROBLEMS WITH SELF AND
NON-SELF

Although it’s important not to confuse the alternative
view proposed by Polly Matzinger (Matzinger, 2002),
today best known critics of classical immunology, with
the one proposed by Varela’s group, part of the criticisms
addressed by Matzinger to classical immunology has to be
taken as important flaws of this classical view. Why the
immune defenses do not protect us from the air we
breathe, the food we eat, the fetuses we carry, the tumors
that kill us (even then it should)? Why are a lot of our
lymphocytes autoreactive without any sign of
autoimmune diseases? Indeed, a lot of evidences in recent
years have shown that autoimmunity is a normal finding
in healthy individuals. Clearly the problem with self and
non-self lies in the determination, namely the nature and
the location, of the frontier. The designation of “self” and
the “other” ignores that such neat divisions were adopted
with a certainty that remain problematic.
One first relaxation to the self/non-self dual view of the
immune system is to maintain the duality, i.e. the immune
system keeps two ways of being in response to external
impact: defensive and tolerant, but not depending on an
evasive frontier to cross. It is the position adopted by
Matzinger who insists in getting rid of the self/non-self
discrimination as the central tenet of immunology. What
she proposes instead is an immune system that just fights
what is dangerous for it. So the dichotomy is maintained
but self/non-self is simply replaced by
dangerous/inoffensive. The fact that this move finally
consists in this simple semantic substitution makes a lot
of immunologists very skeptic against Matzinger position.
However it appears that fighting danger rather than
foreignness entails doctors to adopt therapeutic strategies
that show great successes for certain serious diseases.
Now exploring more logically Matzinger’s position, and
although the full model is still somewhat confused, it is
important to understand better what does the immune
system see as dangerous and why it does so. One view,
the less radical one, would see the danger as resulting
from some specific characteristic of the external
perturbation. It might be an additional feature of the
invading antigen. In such a case, from the outside, the
external impact will be, prior to any interaction,
dangerous or not, and the immune system would still need
to somewhat behave in a dichotomous way, first
recognizing the danger then fighting it. The external
environment of the immune system will still be separated
in two zones: a dangerous and an inoffensive one. This

interpretation of what is dangerous or not is not such an
exciting one, because it still demands from the system the
ability to discriminate and to defend. The self/non-self
frontier is just re-defined but still exists outside the
system.
The most radical view, and for reasons to be discussed
later, makes Matzinger and Varela closer than they appear
to be (in her “science” article Matzinger said that after
many years of finding Varela’s model intriguing she
finally agrees). Varela’s view would see the danger as a
consequence of the interaction between the external
impact and the current state of the immune system. In
such a case, a stimulus is no more dangerous per se, but is
dangerous in the current context of the immune system.
An outside separation in two classes, making the immune
system behaves in two ways, simply collapses. We remain
with an immune system behaving in one only way but,
depending on its current state and the nature of the
impact, proposing different responses to it. For instance,
a same external impact could drive the system to react
differently at different times.
The reason why this second, more innovative
interpretation, is akin to Varela and his group vision can
be easily understood by reading the following excerpt
from the Stanford Encyclopedia (Tauber, 2002) about the
later vision:
“When the immune system is regarded as essentially self-
reactive and interconnected, the meaning of
immunogenicity, that is reactivity, must be sought in some
larger framework. Antigenicity then is only a question of
degree, where “self” evokes one kind of response, and the
“foreign” another based not on it intrinsic foreignness,
but rather because the immune system sees that foreign
antigen in the context of invasion or degeneracy. …. In
the Jernian network, “foreign” is defined as perturbation
of the system above a certain threshold. Only as observers
do we designate “self” and “non-self”. From the immune
system perspective it only knows itself…. While host
defense is a critical function, it is hardly the only one of
interest. Indeed the immune system might be regarded as
primarily fulfilling an altogether different role if its
phylogeny is carefully examined…. Immune reactivity is
determined by context where agent and object played
upon each other…..”

3 A VERY ARTIFICIAL MODEL TO
DISTINGUISH THE TWO VISIONS

In this section, I will describe a very simple model built in
a two dimensional space and very reminiscent of several
models that I did build years ago with my colleagues John
Stewart, Vera Calenbuhr and Vincent Detours (Detours et
al. 1994, Calenbuhr et al., 1996, Bersini and Calenbuhr,
1996). It will provide an easy to understand illustration of
the difference between the self-recognition and the self-
assertion visions.
We will suppose that any immune cell (they could be
antibodies) be identified by its position in a two

dimensional space. In agreement with the key-lock
binding of immune cells with antigens, we will also
suppose, like indicated in figure 1, that any immune cell
exerts an affinity in a zone symmetrically situated with
respect to its position. What we want to model by this
artificial construction is the possibility for a cell to bind
an antigen when it presents a shape symmetrical with
respect to the one of the antibody. The affinity is not
restricted to the symmetrical position but extends to a
square domain of size L, the strength of the binding
decreasing with the distance to the center of the square.

Figure 1: One cell an

At every simulation s
anywhere in the sy
concentration Ci(0),
the cell. Suppose the
a cell i situated in
concentration Ci(t) a
any cell situated in po

affinity =Ci(t)*(L – (

So all cells will exer
obtained by summi
currently present in t

Affj = Σi affin

3.1 THE SELF-R
In the classical vie
antigens are subjec
reciprocally, only the
At every time step, t
in the following way
if (low < Affj < high
 else
Cj(t) = Cj(t) – 1

if Cj(t) = 0 the cell j disappears from the system

In this case Affj is computed just by summing the field
exerted by the antigens.
 Affj = Σi affinityOfAntigeni

Consitently with immunological facts, the cells will grow
in concentration, i.e. simulating an immune response, if
they receive a stimulating field in between two thresolds:
low and high, whose precise values must be known for
the simulation to run. The field must be sufficient enough
but not too high due to the bell shape curve of the
maturation and the proliferation of B lymphocites and
antibodies. The cell
From their side, the antigens will just decrease in
concentration if they are bound enough by the immune
cells. Take an antigen j, if finding enough cells to bind it
i.e. if Affj > low, it will decrease in concentration
according to:
The domain
of affinity
d its symmetrical domain of affinity

tep, a new cell is randomly recruited
stem. It is added with an initial
C for concentration and i indexing
center of symmetry Xo, Yo. Suppose
 position cx and cy and having

t time t . It will exerts an affinity on
sition x, y with value given by:

 |2Xo – cx –x| + |2Yo – cy – y|)/2)

t on any cell j a field of affinity Affj
ng this affinity for all the cells
he system:

ityOfCelli

ECOGNITION VIEW
w, we will assume that only the
t to this field of affinity and,
 antigens exerts affinity on the cells.
he concentration of the cell j evolves
:
) Cj(t) = Cj(t) +1

if (Affj > low) Cj(t) = Cj(t) – k*(Affj/low)

 k is a time rate

 if Cj(t) = 0 the antigen j disappears from the system
The simulation proceeds as follows. Initially, cells are
recruited randomly in the system, but in the absence of
antigens, so with no stimulating field, they can’t survive
and disappear as soon as they get in. When an antigen
enters the space, the simulation behaves as illustrated in
figure 2.

Figure 2: The
antigen and im
The antigen,
symmetrically
and to grow in
suppressing f
decrease in co
Once it is canc
for its disappe

The antigen
 reciprocal stimulation and elimination of
mune cells
now by the field of affinity it exerts
to its position, allows some cells to survive
 concentration. These cells in turn exert a

ield on the antigen. The antigen will
ncentration until it disappears completely.
elled from the system, the cells responsible
arance are no longer stimulated and slowly

The immune
cells

die, driving back the whole system to the initial situation:
random recruitment of not surviving cells.
Playing with the concentration increasing and decreasing
rates (for instance the constant k), the immune cells can
take some time to disappear, akin to a sort of inertial
memory of the antigen encounter. The next time a same
antigen gets in, its cancellation will be faster like for any
secondary immune response.
What needs to be understood, in contrast with the section
to come, is that, in the classical case, cells show affinity
only with antigen and not at all among themselves,
although they occupy the same two-dimensional
description space. Although nothing really differentiates
an antigen from any cell, there must be a magical demon
to tell the cells that the dot in the space is an antigen and
not a cell.

3.2 THE SELF-ASSERTION VIEW
In this less classical view, all cells bind to all cells. To
quote again the Encyclopedia: “there is no essential
difference between the “recognized” and the
“recognizer”, since any given antibody might serve
either, or both, functions. Immune regulation is based on
the reactivity of antibody with its own repertoire forming
a set of self-reactive, self-reflective, self-defining immune
activities”.
In the simulation now, the way we will compute the Affj
received by any cell is as follows:

Affj = αΣi affinityOfCelli + β Σi affinityOfAntigeni

This time, the affinity received by any cell is a weighted
sum of the exogenous stimulation of the antigens and the
endogenous stimulation of the cells themselves. Give a
value 0 to α and you are back to the previous case. There
is no way for any cell to discriminate between the
exogenous and the endogenous impact. All impacts mix
together to stimulate the change in concentration of any
immune cell.

 Figure 3: Snapshot of the self-assertion simulation

In the absence of any antigen, the simulation goes as
shown in figure 3 (a snapshot of the simulation). The
simulation slowly produces a sort of line or a band of self-
sustained cells. Due to the way the affinity is computed
(symmetrically with respect to the center of the space),
cells in the line mutually stimulate themselves. A part of
the line sustains another part of the same line. We speak
of self-assertion since, indeed, this line can be roughly
viewed as a signature of the immune self.

As shown in figure 4, first the system needs to be
triggered off, and during the first time steps a lot of cells
are recruited and very few are killed. During a second
period, when the line of self-sustained cells begins to
form, a lot of cells (not integrated in the line) are killed.
This elimination phase can be roughly assimilated to the
so called clonal selection phase taking place during the
prenatal development and exercising a purging function
of self-reactive cells. It is the period during which the
tolerant zones are learned by the system itself. Finally the
system tends to stabilize its rate of destruction and, while
working at normal regime, integrates and kills new cells
at a constant rate.

Rate of disappearance of cells as a
function of time

0

0,2

0,4

0,6

0,8

1

1,2

t ime

Figure 4: rate of disappearance of cells as a function of
time

number of cells as a function of time

0

50

100

150

200

250

300

350

1 44 87 13
0

17
3

21
6

25
9

30
2

34
5

38
8

43
1

47
4

51
7

56
0

time

nu
m

be
r o

f c
el

ls

 Figure 5. Number of cells as a function of time

In figure 5, plotting the number of cells as a function of
time, again you can see the three successive phases of the
simulation: first very few cells, then a short triggering
period when a lot of new cells are recruited, and finally a
stable regime.
One key observation is that the presence of the line
divides the space in two zones: a reactive zone on the
right and a tolerant zone on the left. If you add an antigen
on the left, it will be tolerated since there is no cell on the
right able to bind it. In contrast, an antigen on the right
will be rapidly destroyed since a lot of cells on the left are
still able to bind it. Basically the shape of the line is
responsible for this division of the space in these two
zones.
It must be clear that these two resulting zones are not
shaped from the outside. There is no a priori division of
the space into reactive and tolerant zones. This division is
self-asserted by the system. The system creates, by its
own evolution, its own zone of tolerance and own zone of
reactivity. You might ask why a completely symmetrical
simulation lead to unsymmetrical outcome. It is a simple
artefactual effect of the random generation of cells that is
amplified in time.
However the final separation of the space in a tolerant and
a reactive zone will always be in relation with the history
of the system. If you initially favor the recruitment in a
given zone, this zone will naturally tend to become the
tolerant one, a finding that qualitatively agrees with the
Burnett’s clonal selection theory.
This qualitative phenomenon i.e. the emergence of some
geometrical patterns of self-sustained cells dividing the
space in tolerant and reactive zones is very robust and
largely independent of the values given to the parameters.
This explains why I don’t need to indicate the precise the
values taken by the parameters of the simulation: α, β,
low, high. The same qualitative outcome will be observed
for a large range of values.
However, what’s of crucial importance here is that no
recognition and discrimination is at work. The system
does not need to discriminate between an immune cell
and an antigen, between self and non-self or along any
prior arbitrary division applied to its biological
environment.

4 TAKING AN ENGINEERING
PERSPECTIVE

We are not biologists but are trying to be influenced by
biology to create new ways of designing useful artifacts.
As I already wrote in a previous paper (Bersini, 1999), I
believe that the self-recognition interpretation of the
immune system is not the most fruitful one. The basic
reason is that this interpretation does not need biology to
be expressed and understood. That the immune system
can discriminate between two classes of external impacts
can be easily translated into a classical pattern recognition
problem. So far I haven’t read any better ways of

classifying, clustering data or constructing defensive
systems, beyond classical ones, which have been
discovered thanks to the immune analogy.
Also I don’t want to pretend that the self-assertion view
has been much more productive. Obviously, there have
been fewer trials. In (Bersini, 1999) I discussed several
engineering applications I was involved with that gained
some benefits from applying here and there hints coming
from immunology. The principal one that was
implemented in all these application is the endogenous
double plasticity inspired from immune networks. This
endogenous double plasticity complies with the following
principles:

1. the structural adjustments (akin to the
recruitment of new cells) intermittently occur
following a longer time scale than the parametric
adjustment.

2. the structural plasticity amounts to the addition
of new elements and the suppression of
redundant elements from the system

3. again like in the artificial world shown above,
the structural adjustments are dependent on the
temporal evolution of the internal parameters (in
the simulation, the current concentration of the
cells). When and how to perform a structural
change should depend on data related to the
dynamics of the parametric change. So the
network endogenous behavior and now
exogenous criteria will guide these structural
changes. Remember the immune system which
only sees and knows itself.

4. these structural endogenous alterations have to
be done in a network spirit by applying simple
heuristics like “compensate for the weakest
elements”, “maintain diversity”, “suppress
redundancy”.

In the same paper, I presented three practical illustrations
of systems capable of evolving in time their structure and
parameters while executing their task: neural net
classifiers, autonomous agents that adapt by
reinforcement learning, and controllers of chaotic
systems.
In none of them, the biological influence was so strong to
claim that I could not have done the same in the absence
of any immunological knowledge, but in all of them, the
way I tackled the problem, reinforcing the adaptability
and the respect of the endogenous constraints, came from
this knowledge.

5 CONCLUSIONS
The paper basic motivation is to better understand the
difference existing between the classical self-recognition
and the more “exotic” self-assertion visions of the
immune system. Although the later is gaining more and
more attention in the biological community, it is not

receiving the same attention in an engineering
perspective. I believe it should.
We all need to admit that the immune algorithms,
whatever they really turn out to be, did not provoke the
same wave of interests as genetic algorithms or neural
nets did for engineering applications. One key reason
could be that in their initial presentation, both GA and
neural nets were proposed in a very coherent and
convincing way as simple algorithms, easy to implement,
and associated with a precise and well-defined operational
context: optimization for GA and pattern-recognition for
neural nets. As a matter of fact, a lot of researchers
discovered the whole problematic of optimization or
pattern recognition by applying GA or neural nets.
Immune algorithms were never sold in such a persuasive
way. No precise and complete algorithm was proposed
and no clear operational context was associated with
them: pattern recognition, defensive system, optimization,
or robotics? Now, when maturing, researchers slowly
realize that just playing with the initial basic GA or the
initial neural nets does not give good results. What they
do instead is to preserve some good mechanisms
originating from this biological inspiration:
population/selection based search or crossover for GA,
multiplayer for neural nets, but turn them into a more
operational form.
This is really what we are all doing today, based on our
respective understanding of how the immune system
behaves: gleaning here and there some inspirations and
turning them into a more operational form. However, we
should keep open our mind to more marginal voices, since
if they are telling the truth, the radical revision they will
entail in their community could have repercussions up to
our own.

References
N. Jerne (1974) Towards a network theory of the immune
system – Annals of Institute Pasteur/Immunology (Paris)
– 125C: 373-389.
F. Varela, A. Coutinho, B. Dupire and N. Vaz (1988).
Cognitive Networks : Immune, Neural and Otherwise, in
A. Perelson (Ed.) – Theoretical Immunology, Vol.2 SFI –
Series on the Science of Complexity – Addison Wesley,
New Jersey pp. 359 – 375.
F. Varela and A. Coutinho (1991): Second Generation
Immune Network – in Immunology Today, Vol. 12 No5 –
pp. 159-166.

H. Bersini and F. Varela (1993) : "The Immune Learning
Mechanisms: Recruitment Reinforcement and their
applications" in Computing with Biological Metaphors -
Chapman and Hall - R. Patton (Ed.)

V. Detours, Bersini, H., Stewart, J. and F. Varela (1994):
Development of an Idiotypic Network in Shape Space - in
Journal of Theoretical Biology - 170.

J. Stewart (1994) Cognition without neurons: Adaptation,
learning and memory in the immune system. CC AI 11:
pp.7-30.
Calenbuhr, V., Varela, F. and H. Bersini (1996). Immune
Idiotypic Network - in International Journal of
Bifurcation and Chaos - Vol. 6 No 9 - pp. 1691-1702
H. Bersini, and V. Calenbuhr (1996). Frustrated Chaos in
Biological Networks - in Journal of Theoretical Biology,
Vol. 188, No 2, pp. 187-200.
H. Bersini (1999). The Endogenous Double Plasticity of
the Immune Network and the Inspiration to be drawn for
Engineering Artifacts. In "Artificial Immune Systems and
Their Applications" - Springer Verlag, pp.22 - 44
P. Matzinger (2002) The Danger Model: A Renewed
Sense of Self – In Science – Vol. 296. pp. 301 – 305
A. Tauber (2002) The Biological Notion of Self and Non-
Self – Stanford Encyclopedia of Philosophy –
http://plato.stanford.edu/entries/biology-self.

http://plato.stanford.edu/entries/biology-self

���������	��
��
��������������������� �!�"���#�$�#%'&$��(��
�*)+��,��$(��-�/.�������� �	�"���

021436587:94;<1>=@?BAC1D54ED1BF
DCA-FEEC

Unicamp

GIHJ1
KML!5/N@O"?!L�H@P"1DFQ3R5/N
DCA-FEEC

Unicamp

S HJ5/KM1
KML�N"T�?BA@N�KVU�W!X!H4K
DCA-FEEC

Unicamp

Y[Z*\/]_^B` aB]
Complex adaptive systems is a terminology used
to describe natural systems, such as biological
and social systems, together with their many
properties, interactions and resultant emergent
behaviours. This paper discusses one general
framework to study complex adaptive systems
aiming at providing a better understanding and
originally demonstrating that artificial immune
systems, together with the biological immune
system, can be placed in the context of complex
adaptive systems. This unique framework is use-
ful for it suggests the possibility of existence of a
common language to support the study of the
many CAS and artificial intelligence systems.
Classifier systems (CS) have been used to model
adaptive agents for CAS. By tracing a parallel
between AIS and CS, this paper makes it possi-
ble to employ AIS as alternative models for CAS
agents as well. Novel hybrid and more complex
systems are only a few of the outcomes that this
paper can bring to the research community.

b c4dfe�gfhji�kfl�emc�h[d
For centuries humankind has been looking into nature
with two main goals in mind. First, to pursue the creation
of models and explanations of how nature works (e.g.,
which laws – if they do exist! – govern gravity, the
weather, our brains, etc.). Second, humankind has also
been looking for inspiration to the development of arte-
facts to make life easier and more comfortable (e.g., by
developing aeroplanes, ships, etc.). With the advent of
computers, the human developments inspired by nature
supplanted the barrier of the construction of artefacts. It
now permeates the more abstract level of computational
tools capable of not only simulating the natural world, but
also of providing computational solutions to complex
problems.

This new perspective of how to use nature as a source of
inspiration for the development of computational tools is
termed nBoqpBr:p8sMo:t4uDr:r vwoyxDz:{|oy}�~4�"t�p
�|{|�B�qoyx4s or t4p��|{��D�:oyx�sm�2o:�y�
nBo:pDr:p8s�oqt4uDr>�@~��:u�{ �-p
}6z (Paton, 1994). The other front of
using the computer to simulate and better understand the
natural world is named t4p��|{|�B�:uD�:o:p�x-uBr:r v��@pD�:oy�JuB�q~4�"nDoyp�r�p�s8v
(de Castro & Timmis, 2002).

In order to provide a more general framework with which
to study natural systems (e.g., the nervous system, the

immune system, the Internet, the social systems, etc.),
several research schools have been proposing general
theories and a common terminology, such as t4p��|{�r:~��Bo:� v ,
~/�@~/}�sM~/x-t4~ and uB�Du6{��:o���~�zqv	z��:~/�"z , that embrace features of
all natural systems. These theories are very important for
they lead to a common language that allows the analysis,
interpretation, modelling, and understanding of natural
systems under a general and interdisciplinary framework.

From an artificial intelligence perspective, this general
framework is a primary pre-requisite for the development
of models and computational tools that can be better un-
derstood without requiring a great knowledge of a specific
domain. In addition, the generality of such a framework
can lead to a straightforward development and implemen-
tation of systems that combine features of more than one
strategy, such as hybrid and ensemble systems. � p��|{|r:~��'uB�Du6{��:o���~+z:v!z��:~8�"z (CAS) is the terminology
adopted here to encompass all these natural systems with
their features of diversity, adaptability, and complexity,
together with the emergent behaviours that arise from the
interactions of their many component parts (Holland,
1995). This paper explores one CAS theory, placing the
immune system and artificial immune systems in the
broader context of complex adaptive systems.

One of the pioneer computational intelligence algorithms
developed to model agents for CAS is the learning classi-
fier system introduced by Holland (1992). We propose the
view that artificial immune systems, as introduced by de
Castro and Timmis (2002), also serve as models for
agents in complex adaptive systems. Indeed, there have
been a number of works in the literature comparing spe-
cific artificial immune systems (AIS) with learning classi-
fier systems (Farmer ~4��uDr:� , 1986; Kauffman, 1989; Varela
~4��uDr:� , 1989; Bersini & Varela, 1990; Bersini, 1991; Hunt
& Cooke, 1996 and Hofmeyr & Forrest, 2000). However,
none of these works thoroughly shows that AIS can be
well placed in the CAS framework proposed by Holland
(1995).

This paper introduces one of the most popular views of
complex adaptive systems (Section 2), and discusses how
classifier systems (CS) are used to model agents for CAS
(Section 3). This work then provides a brief discussion of
the vertebrate immune system, claiming why it can be
characterised as a CAS (Section 4). The paper follows
with an introduction to a framework to engineer AIS
(Section 5), then it explores how this framework is related
with classifier systems, providing a survey of the litera-
ture that brings together CS and AIS (Section 6).

Not only does this work make the first attempt to place a
general-purpose framework to engineer artificial immune
systems into the world of complex adaptive systems, but
it also opens new avenues of research in the three fields –
AIS, CS, and CAS. By presenting this discussion, new
developments could be made in the broadest perspective
of artificial intelligence, by devising models of CAS, and
creating and simulating complex adaptive systems using a
framework to design artificial immune systems.

� l�h[���"�w�m� Y i Y �@emc4���'�����2em�����
The work proposed by J. Holland (1995) starts with a
discussion of how natural (biological and social) systems
are formed and self-sustained. These systems are grouped
together under the heading t4p��|{|r:~���uD�Du�{|�:oy�J~ z:v!z��q~/�"z
(CAS), in which the (complex) behaviour of the whole is
more than a simple sum of individual behaviours. One of
the main questions raised is that of how a decentralised –
with no central planning – system is self-organised. Note
that there is a strong similarity between this concept of a
CAS and the concept of ~/�@~8}¡sM~/x-�¢zqv	z��:~8�"z (Holland,
1998). Indeed, complex adaptive systems exhibit emer-
gent phenomena, but this is not the main focus of the
discussion to be presented here.

As an instance of a CAS, one can think of the immune
system, with its sheer diversity of cells, molecules and
organs, all working in concert to provide security against
foreign attacks and to aid in sustaining life. Several other
examples can be given, such as all bodily systems (e.g.,
the nervous system, and the endocrine system), insect
societies (e.g., ant and termite colonies), trading in com-
merce (e.g., the stock market). A common aspect here is
that there is no central control. Every element composing
the system plays its individual role and sometimes adapts
itself and interacts with other elements and even systems
with the aim of generating and sustaining its integrity and
the life of the organism.

Despite the differences among the many complex adap-
tive systems, in every single case, the persistence of the
system relies on three main aspects: 1) interactions of
components, 2) diversity, and 3) adaptation. According to
Holland (1995), the choice of the name complex adaptive
systems is more than a terminology “[i]t signals our intui-
tion that general principles rule CAS behaviour, principles
that point to ways of solving attendant problems.” (p. 4)

The main objective of (Holland, 1995) is to uncover gen-
eral principles that will enable the synthesis of refined
CAS behaviours from simple laws. The core idea is to
develop a well-designed mathematical model for CAS; a
formal theory. The steps taken toward this goal were to
initially select z�~8��~8x£nDu
z�o:t/z – four properties (u8sBs!}�~�sMuB¤
�:o:p�x , x�p�x�rqoyx�~�u
}�o:� v , ¥�rqp
�|z , and �Bo���~/}6z�o:� v) and three mecha-
nisms (�:u8sBsMoyx�s , oyx��q~/}6x�uDr��@pB�D~4ryz , and nD�Bo:rq�Boyx�s£nDr:pDt/¦4z) –
common to all CAS, and then to devise a framework and
implement a computer-based model to study CAS. The
following is a summary of the intrinsic parts of the Hol-
land's z�~/��~8xwnDu
z�o:t/z .

§B?©¨ ª¬«�A@«*O®­I=Cª�¯�P"ª
As described above, Holland's seven basics are divided
into four properties: aggregation, nonlinearity, flows and
diversity; and three mechanisms: tagging, internal models
and building blocks.

§B?©¨8?°¨ 025/N�±!H�5�3²;:HJF
³ sDs	}�~�sMuD�:o:p�x in complex adaptive systems occurs in static
and dynamic senses. The first sense states how to describe
the inherent structure of CAS (a standard way of model-
ling a CAS), and the second is related to what CAS do
aggregate, i.e. how complex large-scale behaviours
~/�@~/}�sM~ from the aggregate interactions of less complex
elements. More precisely, in the first sense, basically,
there is an aggregation of categories that afterwards will
turn into building blocks for the models. In the second
sense, aggregation is a basic characteristic of all complex
adaptive systems, where each category aggregates with
another category forming a more complex category, thus
yielding to more complex hierarchical aggregations. ´ p�x-¤¡r:oyx-~4u�}�o:�:o:~8z are present in complex adaptive systems
in several distinct levels and they define how non-linear
dynamics almost always make the behaviour of the ag-
gregate more complicated. Therefore, the behaviour of a
system containing non-linear components is harder to
model and to predict. µ r:p
�|z concern how data (e.g., information, stimuli, elec-
tric impulses, resources etc.) propagate through a system
and vary over time. It is also divided into two properties,
the multiplier effect, which spreads an injected resource
or information at a given node or agent throughout the
network, and the recycling effect, as the name suggests,
helps to maintain the equilibrium in several ways: by
adapting the data to a new use or function; by passing it
through a cycle again, as for further treatment; or just by
starting a different cycle in, i.e. to reprocess.

The last property, �Doy��~8}�z�o:� v , is viewed as a necessary fea-
ture to generate and maintain a CAS. In fact, perpetual
novelty is a hallmark of CAS. It indicates that the diver-
sity is the product of progressive adaptations, as proposed
by Charles Darwin (1859), when he observed that the
principles of evolution that operated to generate the spe-
cies, like competition, variation and selection, arise from
the diversity of species.

§B?©¨8?y§ ¶£H494·M1�K!;©FR¸¹F
The first mechanism, denoted �:u/sDsMoyx4s , refers to tag-based
interactions (labelled interactions, i.e. identified and/or
classified) that provide a sound basis for filtering, spe-
cialisation, co-operation, competition, formation of ag-
gregates, manipulation of symmetries and for selective
interactions.

The oyx-�:~/}6x-uBr��@pD�B~�ryz mechanism is the expression chosen
to refer to mechanisms for anticipation (the act of consid-
ering something beforehand, i.e. foreknowledge) and
prediction (the act of reasoning about future events or

possibilities, especially on the basis of special knowledge,
i.e. foresight). In fact, internal models distinguish CAS
from other complex systems. They balance exploration
with exploitation (Holland, 1995), providing the make of
careful systematic searches of profitable and useful re-
sources. There are two kinds of internal models, �:uDt4o:� -
that simply prescribes a current action and p
�J~/}�� - that
explores alternatives (looks ahead), allowing inferences.

The last mechanism, named nB�Do:r:�Doyx�swnBrqpBt8¦4z or sM~/x-~/}�uD�:p
}6z
constitute basic elements or parts that compose internal
models. In fact, relevant building blocks are combined to
model new situations, therefore, to generate internal mod-
els or a completely novel CAS.

º l¢� Y �I�|c�»"c4�wg¼� ����em�w���£ewh¼�½h[i��w�
Y[¾ ��dfe$�¿»@h[g�l�hj�'�"�w�m� Y i Y �@emc4���
�����2em�����

The framework proposed by Holland (1995) for develop-
ing adaptive agents for CAS was introduced as consisting
of three major built-in stages:

1) In the {�~8} ¥�p�}6�@u
x-t4~$zqv	z��:~/� stage, agents are viewed
and described as a collection of message processing
rules. The syntax of the rules depends on their inter-
action with the environment. A set of detectors and a
set of effectors manage this system-environment in-
teraction. Additionally, the {|~/} ¥�p
}6�@u�x�t�~Àzqv	z��:~8�
specifies the agents’ capabilities at a fixed point in
time and it prepares these agents to novel situations
without having all rules a priori.

2) In the t/}�~4�Do:�:¤�u
z6z�o s	xD�@~/x-� stage the core idea is to
provide the agents with the capability of adapting to
the environment. In the performance system, a num-
ber of rules can be fired simultaneously according to
the interactions of the system. As a consequence,
these rules must compete with one another in order to
have a single rule being selected to determine the
output of the system. Each rule has a z��y}�~/x�sM�y� as-
signed, which is modified via t/}�~4�Do:�:¤�u
z6z�o s	xD�@~/x-� on
the basis of experience (e.g., a Bucket Brigade algo-
rithm (Booker ~���uDr:� , 1989)). Credit-assignment is
performed in response (reward- reinforcement or
punishment) to a ‘payoff’ received from the envi-
ronment.

3) The }��Dr:~�¤¡�Doyz�t�p
�J~/}qv stage describes another way of
endowing agents with adaptability by allowing the
system to automatically generate ‘plausible’ rules. It
should be done always taking the past experience into
consideration. The author uses the notion of schemas
(likened to building blocks) and genetic algorithms as
tools for rule discovery.

The framework described above for modelling CAS'
agents is reminiscent of classifier systems. Indeed, classi-
fier systems have already been used to model CAS (Hol-
land, 1992).

ÁB?©¨ P�GÂ=Cª!ª�¯6S ¯�«*ÃÄª¬ÅCª!Æ�«I¶®ª
J. Holland proposed the principles of classifier systems in
1976 (Holland, 1992). They constitute an evolutionary
computation strategy for creating and updating rules
(named t�r:u�z�z�o ¥�o:~8}�z), that are able to point out suitable
actions for adaptive agents in changing environments. In
some cases, classifiers are kept under permanent evolu-
tion to improve their performance. There are some basic
concepts related to classifier systems:

1) Classifiers are composed of an antecedent part (t4p�x�¤
�Bo:�qo:p
x) and a consequent part (uDt4�qo:p
x). The antece-
dent part of a classifier is a string of fixed size com-
posed of elements of the ternary set {0,1, #} - the
symbol “#” is called “don’t care”, which can assume
any value over a pre-defined finite alphabet (e.g., a
wild card in a playing game of cards).

2) A classifier system communicates with the environ-
ment through his message �D~4�q~4t4�qp
}6z and ~�¥:¥�~�t4�:p�}�z .
Detectors receive and decode messages from the en-
vironment. Effectors propose actions on the environ-
ment (Figure 1).

3) A z��y}�~/x�s���� is associated with each classifier, and
expresses the energy or power of the classifier during
the evolutionary process.

4)
µ ~4~4�DnDuBt8¦ from the environment defines an appropri-
ate reward to the active classifier, proportional to the
quality of the action(s) it proposes.

5) The zq{�~�t4o ¥Jo:t4o:� v of a classifier is inversely proportional
to the quantity of don't care symbols (#) in its antece-
dent part. Classifiers with low specificities can match
larger numbers of messages from the environment,
and vice-versa.

Classifier Systems are divided into three interactive and
distinct sub-systems: the Ç��Br:~�u�x-�wÈ¿~/z6z�u8sM~$É��DnB¤©É�v!z��q~/� ,
the

³ {D{�p�}��qo:p
xD�@~/x-�wp°¥ � }�~4�Do:�ÊÉ-�BnD¤°É�v	z��:~/� and the Ç��Dr:~Ë oyz�t�p
�J~/}qv$É��DnD¤°É�v	z��:~/� (Figure 1).

ÌmÍ�Î!Ï�Ï�ÐyÑ�ÐqÒDÓmÔ�ÕMÏ�Ö6Ò�×ØÏ

Rule and Message
Sub-System

Apportionment of Credit
Sub-System

Messages

Action Proposed by
the Winner
Classifier

Rule Discovery
Sub-System

Feedback

Matched Classifiers

Classifiers

Ù

Ú

Figure 1: Simplified flow (Classifier Systems ↔ Envi-
ronment). D: detectors; E: effectors.

The Ç��Dr:~"u�x��ÂÈ¿~/z6z�u8s�~�É-�DnB¤©É�v!z��:~8� decodes messages in a
way that the classifier system can recognise them. Then,
all classifiers try to match their antecedent part with the
message (comparison phase). This matching can be made
by bit-to-bit comparison, according to specific rules, or
just by calculating a variation of the Hamming distance.

 S TA R T O F TH E E V O LU TIO N A R Y P R O C ES S

 S TA R T O F O N E EP O C H Û�Ü�Ý�Þ$ß
: D etect environ m en tal m essages. Û�Ü�Ý�Þ�à
: C od e m essages. Û�Ü�Ý�Þ�á
: S elect m atched classifiers. Û�Ü�Ý�Þ�â
: B egin C om p etition:

 - C alculate each co m petitor’ s bid .

 - Poin t out th e w in ner.

 - C ollec t taxes from com p etitors and th e w inn er. Û�Ü�Ý�Þ�ã
: A c t on th e en viron m ent. Û�Ü�Ý�Þ$ä
: R eceive en viron m en t’ s feed back . Û�Ü�Ý�Þ�å
: R ew ard or not th e w in ner classifier. Û�Ü�Ý�Þ�æ
: C h arge life tax from all cla ssifiers. Û�Ü�Ý�Þ�ç
: If it is n ot the en d of an epoch , go to

ÛDÜyÝ©Þ�ß
.

 E N D O F O N E E PO C H

Û�Ü�Ý�Þ$ß�è
: Selec t cla ssifiers to ap p ly genetic op erators

(gen erally , the m ore ad ap ted on es).

Û�Ü�Ý�Þ$ß�ß
: A p ply c ro ssover and m u tation op era tors to

gen era te th e offsp rin g.

Û�Ü�Ý�Þ$ß4à
: Selec t cla ssifiers to b e rep laced (gen erally the

less adap ted on es).

Û�Ü�Ý�Þ$ß4á
: In sert the gen era ted offsprin g of

ÛDÜ�Ý©Þ�ß�ß
 in to

th e pop u la tion, to replace th e c la ssifiers
selec ted on

Û�Ü�Ý�Þ$ß4à
.

Û�Ü�Ý�Þ$ß4â
: If it is n ot the end of the evolu tion ary p rocess,

go to
ÛDÜyÝ<Þ�ß

.

Figure 2: Basic algorithm of a Classifier System.

Each classifier that matches the environmental message is
sent to the

³ {B{|p
}��:o:p�xD�@~/x-�Êp©¥ � }�~4�Do:�"É��DnB¤©É�v!z��q~/� where
they participate in a t�p
�|{|~4�qo:�:o:p�x . This competition is a
random process biased by the strength of classifiers that
matched their antecedent part with the message - classifi-
ers with higher strengths have higher probabilities of
winning the competition. The winner will act on the envi-
ronment. The environment will reply in response to the
action proposed by the winner classifier. The

³ {D{�p�}��:o:p�x�¤
�@~/x-�	p©¥ � }�~��Bo:��É-�BnD¤°É�v	z��:~8� incorporates a value generated
by this feedback from the environment to the strength of
the active classifier at that moment. Once the feedback is
received from the environment and the credit is attributed
to the winner classifier, a new message will be provided
by the environment, describing its new state.

The process goes on iteratively, epoch by epoch. At the
end of each epoch, the classifier system will take part in
another process of evolution at the Ç��Br:~ Ë oyz�t4p���~/}qvjÉ-�DnB¤
É�v!z��:~8� , where genetic operators are applied to produce a
new generation of classifiers. Basically, a genetic algo-
rithm chooses classifiers with large strengths and pro-
motes reproduction among them by applying the genetic
operators of crossover and mutation. Offspring replace
weak individuals (the ones with lower strength).

Several taxes are collected from all individuals in the
population of classifiers. A rqo ¥�~w�:u�� is charged from each
classifier at each iteration. A nBoq�£�:u4� is collected from
each participant of the competition. The winner in the
competition also pays a tax for the right to act on the
environment. A simplified algorithm is depicted in Figure
2. It provides the starting point from which one can have a
better insight of the internal processes of classifier sys-
tems.

Based on previous studies, we can state that classifier
systems constitute a sufficiently flexible tool for self-
adaptation to time-varying contexts. Additionally, they
have shown effectiveness on the production of secondary
responses to previously presented stimuli and are able to
react promptly to changes in the environment due to their
diversity preservation feature (Vargas ~4�!uDr:� , 2002).

Note that the basic concepts of a classifier system are
reminiscent of the framework, discussed previously, for
adaptive agents to model CAS. For instance, the set of
detectors/effectors plus the IF/THEN rules (classifiers)
correspond to the performance system. The rule discovery
and credit apportionment systems are equivalent to the
rule discovery and credit assignment algorithms, respec-
tively, as summarised in Table 1.

Table 1: Mapping a classifier system into the Holland’ s
framework for adaptive agents to model CAS.
P�é©1BF6F²;yê²;:HJ5"ª�ë�F¡3²H�¸�F =CL!1
±�3²;�ìDH�=CE
H�K¬3RF�ê²ND5"PI=Cª
Set of detectors/effectors
plus the classifiers

Performance system

Rule discovery system Rule discovery system

Credit apportionment sys-
tem

Credit assignment system

í e�î��ïc��'��k�d���� ����em�w� Y � Y l�hj�'ð
�"���m� Y i Y �@emc����'� �¿�2em�w�

It is possible to identify the seven basics of all CAS in the
mammalian immune system.

ñB?©¨ 0|Ã@òC0|«*Ã@Æ�¯6«�ª
1)

³ sBs!}�~6s�uD�:o:p�x – In the immune system, aggregation can
also be divided into z��:uD�:o:t and �6v	x-u
�@o:t . The static ag-
gregation corresponds to the intrinsic structure of the

immune system, which is composed of a large variety
of cells. Among them, lymphocytes are the most im-
portant ones, from a biological and computational per-
spective. These cells can be naturally categorised ac-
cording to their physiology and function, mainly into
B- and T-cells. They all act together to protect our
bodies against foreign attacks by pathogens, and
against malfunctioning self-cells. The physiology and
functions that lead to an aggregation of immune cells
can be easily exemplified. For instance, those naïve
lymphocytes that mature within the bone marrow are
termed B-cells, and those that mature into the thymus
are named T-cells. Macrophages are different from B-
and T-cells for they act by scavenging infected cells
and other debris found in the blood stream and lymph.
Interactions among cells and molecules in the immune
system are not only abundant, but also necessary for
its functioning. Without the help of T-cells, B-cells
cannot detect pathogens hidden inside and causing
damage to our own cells. Also, chemical products re-
leased by B- and T-cells stimulate and signal to other
cells, such as macrophages and even other B- and T-
cells, to ‘detect’ pathogens and perform their roles
against them. Therefore, the �6v	x-u
�@o:t�u/sDs!}�~6s�uD�:o:p�x (in-
teraction) in the immune system leads to more power-
ful immune responses to pathogens. Aggregation is
thus pervasive in the immune system.

2)
´ p
x-¤¡rqoyx�~�u
}�o:�:oq~/z - In the case of the immune system,
there are, among others, the effects of saturation in an-
tibody production and lymphokine secretion. Regard-
less of the amount of pathogens invading the organ-
ism, antibody production and lymphokine secretion
cannot raise above a certain level. Nonlinearity is also
evident when one considers that, for example, two an-
tibodies acting together have a different effect in an
antigen than if we sum the effect of both of them act-
ing individually. This holds true for all elements in the
immune system, from lymphokines to macrophages.

3)
µ r:p���z - Alike nonlinearity, several levels of flow can
be identified in the immune system. From the flow of
immune cells throughout the organism, to the flow of
their secreted chemicals (e.g., lymphokines). The mul-
tiplier effect can be observed during B- and T-cell
clonal expansion (proliferation) in response to anti-
genic stimuli. When an antigen is detected, some lym-
phocytes are selected due to an antigenic recognition
and start proliferating, thus releasing (spreading) anti-
bodies and lymphokines in the lymph and blood
stream. An instance of the recycling effect is the affin-
ity maturation process, which allows immune recep-
tors to become more adapted to the antigenic stimuli.
Another example is the release of lymphokines,
mainly by T-cells, signalling the death of an antigen
and thus ending the immune response allowing the
immune system to return to its equilibrium (non-
responsive) state.

4)
Ë oy�J~/}6z�o:� v - In the immune system, B-cells, T-cells,
macrophages, granulocites, chemokines (lymphoki-
nes), etc., all contribute to a suitable immune function-

ing. Diversity in the immune system can also be stud-
ied in different levels. For instance, at an aggregation
level, there are different types of cells (e.g., B-cells, T-
cells and macrophages), molecules (e.g., antibodies,
and lymphokines), and organs (e.g., bone marrow,
thymus, and lymph nodes) composing the immune
system. In addition, many of these groups have an in-
trinsic diverse set of components. For example, it is
known that there is a large variety of lymphocyte re-
ceptors that endow the immune system with the capa-
bility of recognizing an even more diverse set of anti-
genic patterns.

ñB?�§ ¶£«�P�óm=@O"¯�ª�¶®ª
1) ô�u/sDsMoyx4s - Each immune cell has its particular design;

not a single element is the perfect copy of another one.
Nevertheless, all elements of a given type (e.g., B-
cells) share some common features (tags) that allow
them to be categorised as B-cells. The same is true for
other cell types and molecules.

2) õ�x-�:~8}�x-uBr!�@pB�D~4r�z - When the immune system is primed
with a type of pathogen, it builds a repertoire of cells
and molecules that is specialised in recognising this
type of pathogen. The immune system thus builds an
internal model that allows it to anticipate a known an-
tigenic patern, thus promoting a faster recognition and
elimination of previously seen pathogens. The idea of
internal models in the immune system is largely stud-
ied in theories of immune networks. In the original
immune network theory, introduced by Jerne (1974),
individual cells and molecules are capable of recognis-
ing each other and antigens as well. As an outcome,
the immune system naturally generates and maintains
a network of immune cells and molecules that interact
with each other even in the absence of external stim-
uli. The same immune cell that can recognise another
immune cell can also recognise an antigen. The im-
mune cell recognised has similar attributes to the anti-
gen and is thus called an oyx��q~/}6x�uDrBo��@u/sM~ of the antigen.
The immune cells and molecules that are currently
available (available repertoire) in the immune system
can be likened to the tacit internal models, whilst
those cells that are constantly being created and re-
placing the existing low stimulated ones can be lik-
ened to the overt internal models.

3) ö*�Bo:rq�Boyx�s�nBr:pDt/¦�z - A clear example of the presence of
building blocks in the immune system is the use of
genes, selected from gene libraries, to construct lym-
phocyte receptor molecules. Individual genes and the
libraries themselves can be considered as building
blocks to generate receptor molecules.

÷ Y »"g Y �'�møùhjg�ú�e�h���d ¾ c�d��w�wg
Y gfemc4»"c�l�c Y �ûc4�'�'k�d���� ���2e��w���

As with any new field of research, the various works on
artificial immune systems lack a more fundamental set of
ideas, mechanisms, and common language for their de-

scription, understanding and development. To alleviate
these disparities, a first textbook in English is now being
released (de Castro & Timmis, 2002). This section briefly
reviews and discusses the framework proposed in this
book.

One of the contributions of this textbook is the proposal
of a generic framework with which to design and under-
stand artificial immune systems. Artificial immune
systems have been defined as adaptive systems inspired
by theoretical immunology and observed immune
functions, principles and models, which are applied to
problem solving (de Castro & Timmis, 2002). To design
an AIS, the authors proposed a layered framework with
three main parts:

1) a }�~¡{ }�~8z�~8x��quB�:oqp
x for the components of the system,

2) a set of �@~4t8��u�x�o�z��"zw�qp�~/�JuBr:�DuD�:~��y�-~�oyx��q~/}�uBt��:o:p�xBz of
individuals with the environment and each other, and

3) some uD�Bu6{��quB�:oqp
x*{ }�pBt�~4�D�
}�~/z .
Within each of these layers there are various strategies.
For instance, in layer 1 – representation – shape-spaces
(Perelson & Oster, 1979) play a major role. A shape-
space may be understood as a (search) space where
attribute strings are used as abstract models to represent
immune cells and molecules. The idea is to use the
attribute strings as means of quantifying the degree of
recognition (affinity) between immune cells, and between
them and the environment.

In layer 2 – interactions – the environment may be
simulated by a set of input stimuli, and fitness and/or
affinity functions. These allow the determination of the
(relative) quality of the individuals composing the
population. For example, if using binary strings in layer 1
to represent the immune receptors, a metric such as the
Hamming distance is a candidate to be used to quantify
the degree of similarity or dissimilarity (recognition)
between two bitstrings.

The procedures of adaptation in layer 3, that govern how
the behaviour of the system varies over time, are usually
simplified models of an immune function, process, or
theory. For instance, clonal selection (Burnet, 1959),
negative selection (Kruisbeck, 1995), immune networks
(Jerne, 1974), and so forth, have been largely used by the
AIS community. These procedures usually take the
affinity/fitness measures of layer 2 as some of their
inputs.

üB?©¨ =@¯�ªwS Ã�=@¶£«Âýþò�Ã"ÿ ¯�O£=Ä­�Ã@òÊ=��"«*Ã
0|¯�P"Æ��"Ã"«

Note that this framework is not much different from the
one proposed by Michalewicz and Fogel (2000) when
describing heursitic problem solving techniques. They
suggest that three main concepts are involved in problem
solving: }�~¡{ }�~8z�~8x��:uD�:o:p�x , the definition of an pDn��J~4t4�qoy��~
¥��
x-t4�qo:p
x , and the choice of an ~8��uDr:�DuB�:oqp
xÄ¥��
x-t4�qo:p
x .
Additionally, the proposed framework for AIS also brings
some similarities with the framework introduced by

Holland (1992) to model adaptation in natural and
artificial systems. Holland suggests that such a framework
might be composed of an ~/xD��o�}�p�xB�@~8x�� undergoing
adaptation, an uD�Bu6{|�:oy��~ {|r:u�x which determines successive
structural modifications in response to the environment,
and a {|~/} ¥�p
}6�@u�x�t�~��@~�u
z���}�~ of different structures in the
environment.

There are also many similarities between the proposed
AIS framework and some basic design principles of other
biologically inspired techniques, such as neural networks
and evolutionary algorithms. Artificial neural networks
require a model for an artificial neuron and a network
structure (representation), one or more activation function
(interactions), and a learning algorithm (adaptation
procedure). Evolutionary algorithms also require some
sort of data structure (representation), fitness function
(interactions), and variation (genetic) operators to be used
in the adaptation procedures.

Therefore, though there might be slight differences among
the many frameworks for problem solving and modelling
of complex adaptive sytems, it is possible to stress a set of
basic components (building blocks) from which some of
them may be useful in a particular context. As examples,
one may stress an environment in which the systems are
built, a given representation scheme for individuals that
inhabit the environment, some evaluation mechanisms to
allow for a qualitative distinction of individuals, and
adaptation strategies to change the configuration (state) of
the system.

� Y gfemc4»"c�l�c Y �ûc4�'�'k�d���� ���2e��w���
Y d�i�l�� Y �*�|c4»"c���g�� �¿�2em�w� �	� Y
��k�g����m� Y d�i Y l�hj�'� Y g�cD�2hjd

There have been a number of works in the literature com-
paring specific artificial immune systems with classifier
systems. Among others, one can highlight the works of
Farmer ~4�$uDr:� (1986), Kauffman (1989), Varela ~4�wuDr:�
(1989), Bersini & Varela (1990), Bersini (1991), Hunt &
Cooke (1996) and Hofmeyr & Forrest (2000) (see Table
1). This section aims at surveying the works from the
literature that liken specific AIS with classifier systems
(CS), and placing the framework for engineering AIS,
introduced in Section 5, in the context of classifier sys-
tems.

B?©¨ =#ª��"Ã�A@«*Å#òmS�P"ªm=@O�� =@¯�ª
To date, all the works comparing AIS with CS were made
under specific application scenarios. To the authors’
knowledge, the first work to look for similarities and
differences between both systems was presented by
Farmer ~��"uBr:� (1986). Basically, the authors wrote both
systems in the form of a dynamical system, resulting in
equations of motion to describe their dynamics. A CS was
used to model the immune system (IS) by drawing an
analogy between individual classifiers and antibodies.
They pointed out that the main difference between both

systems was the nature of the nonlinearity in both equa-
tions. They also stressed other differences, like the inter-
action with the external environment and the system of
message passing used in the classifier system. Addition-
ally, the authors even stated that “ It is an accident that
there is any similarity at all between both systems” . De-
spite that, some similarities were presented. They found
out that the generation of new solutions acts in precisely
the same manner in both systems (providing creativity),
and that both frameworks are strongly non-linear dynami-
cal systems. Unfortunately their work had relatively little
impact on CS research, but is considered a landmark of
the field of AIS (de Castro & Timmis, 2002).

Table 2: A synthesis of the comparisons performed by [1]
Farmer ~4�!uDr:� (1986) and [2] Hofmeyr & Forrest (2000). P�é©1DF6FR;yêQ;:H�5

ª�ë-FQ3QH4¸
ý#ND5�
 =C5_3²;�ê²;:9�;©1
é!¯6¸$¸wW!K!H@ª¬ë-F¡3²H4¸¹F

Classifier [1] Antibody

Specificity [1] Specificity

Condition [1] Epitope

Tax [1] Dissipation term

Payoff [1] Antigen reduction

Economy [1] Concentration update rule

Performance
function

[1] rate of antigen removal

External mes-
sage

[1]
[2]

Antigen
Detector

Message list [1]
[2]

Paratopes and antigens
Network traffic

Action [1]
[2]

Paratope
Isotypes

Strength [1]
[2]

Concentration
Immature, mature, activated
and memory states

Genetic opera-
tors

[1]
[2]

Genetic operators
Random detectors

Matching [2] via the r-contiguous bits rule

Competition [2] Bidding for messages

More specific
match wins

[2] more specific match wins

Support [2] Activation threshold

Message inten-
sity

[2] Sensitivity level

Bucket brigade [2] Affinity maturation

Triggering [2] Negative selection

For Bersini and Varela (1990) the Immune System is
more like Holland's classifier system (either escape 'brit-
tleness' (fragility) or 'semantic closure'). The 'problem
solving' qualities belong to an evolving, adaptive and self-
organising population of interactive operators. The au-
thors suggest that a complete comparison between CS and
an immune network model covers the whole cognitive
domain: search, adaptability, memory and learning.

In Hunt and Cooke's (1996) point of view, their immune
network model combines the advantages of learning clas-
sifier systems with some of the advantages of neural net-
works, machine induction and case-based retrieval. The
authors believe that although their AIS has similarities
with both systems, it differs from both of these in a num-
ber of significant aspects. These differences have the
potential to make their AIS applicable in situations where
neural networks or learning classifier systems are unsuit-
able, e.g. learning classifier systems find it difficult to
deal with problems which lack separation between global
solutions or have many locally optimal rules. This is not
the case for their AIS.

Hofmeyr and Forrest (2000) referred to an AIS for net-
work intrusion detection as a resemblance to the architec-
ture of a classifier system. The mapping between their
AIS and CS was not 1 to 1. In their implementation noth-
ing corresponded to the action part of a classifier. Fur-
thermore, the authors were the first ones to suggest that
their AIS could be added to the repertoire of CAS.

Table 2 summarises the comparisons made by Farmer ~4�
uBr:� (1986) [1] and Hofmeyr and Forrest (2000) [2] with
classifier systems. Note that, in some cases, an equiva-
lence between both works can also be drawn.

B?�§ P"ª�=@O��£= S Ã�=@¶£«�ý òmÃ"ÿ+Æ*ò��"«�ª�¯��mO =@¯�ª
The comparison of specific AIS with classifier systems
can be extended to a more general comparison of AIS in
the light of the framework described in Section 5 as fol-
lows (see Table 3).

Classifiers may correspond to attribute strings, in a given
shape-space, representing immune cells and molecules.
These strings can be simple structures such as binary
strings or more complex structures such as one containing
symbolic values. The communication with the environ-
ment is performed via a set of input stimuli, or one or
more fitness/affinity measures. A detector in a classifier
system corresponds to a receptor in an immune cell, and
the effector might be likened to lymphokines excreted by
the immune cells. Other types of effectors can also be
available in an AIS depending on their rationale (e.g., the
elimination or classification of given pattern). The
strength of a classifier might correspond to the affinity
value of a given immune cell or molecule, which in turn
will be responsible for determining an action of or to be
acted upon this cell or molecule. Though most AIS do not
employ wild cards (don’ t cares) in their representation, it
can also be found in the literature (e.g., Hart ~4��uDr:� , 1999).

Table 3: General comparison between AIS and CS.
P�é©1DF�F²;yêQ;:H�5"ª�ë-FQ3QH4¸�F =C5_3²;�ê²;:9�;©1
é!¯6¸$¸wW!K!H@ª¬ë-F¡3²H4¸¹F

Classifiers Attribute strings

Strength of a classifier Fitness/affinity

Detector Receptor

Effector Lymphokines excreted

Don’t cares (#’s) Don’ t cares

In the highest level it is also possible to link AIS with
classifier systems. The rule and message sub-system can
be likened to the set of attribute strings representing im-
mune cells and molecules. The apportionment of credit
sub-system can be equated to the set of mechanisms to
evaluate the interactions of individuals with the environ-
ment. Finally, The rule discovery sub-system corresponds
to the procedures of adaptation for AIS. Table 4 summa-
rises the framework comparison between AIS and classi-
fier systems.

Table 4: Framework comparison between AIS and CS.
P�é<1BF6FR;�ê²;:HJ5"ª¬ë-F¡3²H4¸¹F =C5�3²;yêQ;:94;<1
é!¯6¸$¸�W¬K	H@ª�ë-FQ3QH4¸¹F

Rule and message sub-
system

Representation (shape-
spaces)

Apportionment of credit
sub-system

Mechanisms to evaluate
interactions

Rule discovery sub-system Procedures of adaptation

In addition to the general comparison made above, there
are some equivalencies between both systems that should
be emphasised:

• both systems employ tags in their inside and outside
interactions;

• it is possible to observe an intrinsic willingness to
combat or to compete;

• the matching processes are isomorphic in function;

• both systems are frequently updating their internal
models.

As an additional contribution, we will follow Holland's
suggested common representation, described in Section 4,
in order to create a simplified model for the AIS.

There are three stages that we must follow to start the
modelling (see Section 4 for details). The first one is the
{�~8} ¥�p�}6�@u
x-t4~wz:v!z��:~8� . In this stage agents are viewed and
described as a collection of message processing rules. The
exposition is going to start by identifying the agents in an
immune system. Recalling that agents are active elements
that form CAS, it is possible to say that the immune sys-
tem has several agents. Among them, choose the antibod-
ies as the representative agents of the immune system.

Each agent can be modelled as a classifier, i.e. a message-
processing rule. The rule syntax will vary according to the
interaction with the environment. The agents will have
detectors, to detect environmental stimuli, e.g. tags on
antigen surfaces, and effectors to indicate the next step or
what task should be accomplished.

In stage 2, it is necessary to define the credit assignment.
This can be done by taking into consideration the affinity
measure between the antibody and the antigen, i.e. the
classifier and the stimuli.

Finally, the last stage is Rule discovery and it can be dealt
with a modified genetic algorithm, taking the past experi-
ence of memory cells (classifiers with high strength) into
consideration.

� »"c4d Y �ûg��w� Y g�ú �
This paper reviewed complex adaptive systems as all
natural systems exhibiting a number of diverse interactive
individuals and presenting adaptability. It was the first
attempt to place artificial immune systems into the con-
text of complex adaptive systems proposed by J. Holland
(1995).

A framework to engineer artificial immune systems and
the main concepts involved in the design of classifier
systems were also presented. These allowed a survey and
general comparison between CS and AIS. As both sys-
tems were demonstrated to be equivalent and classifier
systems have been used to model agents for CAS, AIS are
also suitable to model agents for complex adaptive sys-
tems.

The framework to study CAS is generic in the sense that
it provides a common language for the modelling, under-
standing, simulation, and creation of computer models for
CAS. This common language, together with the suitability
of AIS to study CAS, lead to a broader applicability of
AIS and to its possible combination with several tech-
niques inspired by other systems or processes. This work
therefore opened new avenues of research that may result
in new developments of artificial intelligence approaches,
through the proposal of models of CAS and the creation
and simulation of complex adaptive systems by using a
framework to design artificial immune systems.

Indeed, de Castro and Timmis (2002) have surveyed a
number of works in the literature describing and propos-
ing hybrids of AIS with neural networks, evolutionary
algorithms, fuzzy systems, and so forth.

=@9�
�K!N��@é:HJL!E
H�¸$H4K�3RF
Patrícia A. Vargas would like to thank CAPES for the
financial support.
Fernando J. Von Zuben would like to thank CNPq
(ns.: 300910/96-7 and 52.1100/01-1) for the financial
support.
Leandro N. de Castro would like to thank CNPq (Profix n.
540396/01-0) for the financial support.

Ã"H/ê²HJ5/H�K	9�H�F

Bersini, H. (1991). Immune Network and Adaptive Con-

trol. Proceedings of the First European Conference
on Artificial Life, MIT Press, pp. 217-226.

Bersini, H. & Varela, F. (1990). Hints for Adaptive Prob-
lem Solving Gleaned from Immune Networks. Pro-
ceedings of the First Conference on Parallel Problem
Solving from Nature, pp. 343-354.

Booker, L. B., Goldberg, D. E. & Holland, J. H.
(1989). Classifier Systems and Genetic Algorithms.
Artificial Intelligence, vol. 40, pp. 235-282.

Burnet, F. M. (1959), ôB�-~ � r:p�x�uDrÊÉ-~4r:~�t4�:o:p�xÄôB��~�p
}qv#p°¥³ t��B�Doy}�~4��õ6�"�@�
x-o:� v , Cambridge University Press.
Darwin, C. (1859), �IxV�y�-~��I}�o sMoyxwp©¥"É�{|~4t�o:~/z*n6v@È¿~4u�xDz*p°¥´ uD�:��}�uDr�É�~�r:~4t��:o:p�x , 6th Edition, [Online Book]

www.literature.org/authors/darwin.
de Castro, L. N. & Timmis, J. I. (2002).

³ }��:o ¥Jo:t4o:uDr8õ��"�@��x�~
É�v!z��:~8�"z�� ³ ´ ~/� � p��|{|�B�:uD�:o:p�x-uBr�õ6x��:~�r:r:o sM~/x-t4~ ³ {�¤
{�}�pBuDt/� , Springer-Verlag.

Farmer, J. D., Packard, N. H. & Perelson, A. S. (1986).
The Immune System, Adaptation and Machine
Learning, Physica 22D, pp. 187-204.

Hart, E. & Ross, P. (1999), The Evolution and Analysis of
a Potential Antibody Library for Use in Job-Shop
Scheduling, in ́ ~/��õ��D~4u�z�oyx���{��qoy�@o��8uB�:oqp
x , D. Corne,
M. Dorigo & F. Glover (eds.), McGraw Hill, London,
pp. 185-202.

Hofmeyr, S. A. & Forrest, S. (2000). Architecture for an
Artificial Immune System, Evolutionary Computa-
tion, 8(4), pp. 443-473.

Holland, J. H. (1992).
³ �Bu6{|�:uB�qo:p
xfoyx ´ uB�:��}�uBr�u�x-� ³ }��qo ¥�o:¤

t4o:uDr�É�v!z��:~8�"z . MIT Press.

Holland, J. H. (1995). �mo:�D�B~8x��I}��D~/}����mp
� ³ �Du6{��:uD�:o:p�x
öI�Do:r:��z � p
�|{|r:~��Bo:� v . Addison-Wesley, Inc.

Holland, J. H. (1998). �Â�@~8}¡sM~/x-t4~ � µ }�p�� � �-uDp
z*�qp!�I}��D~/} .
Addison-Wesley, Inc.

Hunt, J. E. & Cooke, D. E. (1996). Learning Using an
Artificial Immune System, Journal of Network and
Computer Applications, 19, pp. 189-212.

Jerne, N. K. (1974), Towards a Network Theory of the
Immune System, Ann. Immunol. (Int. Pasteur) 125C,
pp. 373-389.

Kauffman, S. A. (1989). Principles of Adaptation in
Complex Systems, in D. Stein (ed.), " ~4t4�q�
}�~/z@oyx�����~
É�t�o:~/x-t4~8z*p°¥ � p��|{�r:~��Bo:� v , Addison Wesley.

Kruisbeek, A. M. (1995), Tolerance, ôB��~mõ6�"�@�
x-pDr:p/sMoyz�� ,
3/5-6, pp. 176-178.

Paton, R. (ed.) (1994),
� p��|{|�B�:o�x4s���o:���wö*o:pBrqp/sMo:t4uDrDÈ¿~4�quB¤

{��-p
}6z , Chapman & Hall.
Perelson, A. S. & Oster, G. F. (1979), Theoretical Studies

of Clonal Selection: Minimal Antibody Repertoire
Size and Reliability of Self-Nonself Discrimination, # ���y�-~4p�}�� ö*o:pDr:� , 81, pp. 645-670.

Varela, F., Sanchez, V. & Coutinho, A. (1989). Adaptive
Strategies Gleaned from Immune Networks in B.
Goodwin and P. Saunders (eds.), Evolutionary and
Epigenetic Order from Complex Systems: A Wad-
dington Memorial Volume. Edinburgh U. Press.

Vargas, P. A., Lyra, C. & Von Zuben, F. J. (2002). On-
line Approach for Loss Reduction in Electric Power
Distribution Networks Using Learning Classifier Sys-
tems, in " ~4t��:�
}�~ ´ pD�:~8z�o�x ³ }��:o ¥�o:t�o:uDr�õ�x-�:~�r:r:o sM~/x-t4~
(LNAI 2321), Springer-Verlag, pp. 181-196.

�������� � 	
���

���
����
�� ��
������ ������ ���
��

����� ����	�
 ��
���� �������� ��� ������ ������	��

������� �����	
	��
�����	�

�������	
���
 ���� ���� �	�	��		� �	�����

�����
���	��� �	���
��	��	���� !���������
�"����� #���	 $��

%&&	�
����	 '�� #�	

�� �������� �	(&�
!�����	

��������

�� �� ��	
� �	
 �	 ���
� ��� ���
�����
���
� ���
	��� 	� �	����������� ��������

������ ������� ���� ��� �	���� ������� ����
�	� ���
���� 	� �������	��
 �������� ���
�	��� 	� ��� ���
	�� ����� �	����� ��� ���
���� �������
��
� ��� ����� ��� ������
�
	���
���� �����	���� ��� �����
����� ���
����� ������� � �	������ 	
 	� �����	����
���	��� ��� �	���! ��� ��	��
� �������	�
����	������ ��������� 	��� ����� ���� ����
������	
 �����
��� �����	 ����	� �	��
 "	�
#���$ �� ����	����� ��� ���
���� �	� ����

	���
��� ���� ������! ��

� �	������� ���
���

� ��������� �	�	
	����� ����� ����
��
��� �	������
��� ������ ����
�� ��	� %	��
�
�& '��
	�� ���	�� ��	�� ��� �	��������	�
��� �	�������� 	� ����	� "(��)	��*+����$ ���
���
������ "����+�����
����$ ������� ,� ��	

���� �� ����� ����� ����� 	� ������! �� ��� ��
���������� ���� ��� #���
�

 ������� ������
��

�
��� �	��� ���
 ���
�

 �������� � ��
��
��
� �������	� ����	������! ���� ����� ����
���� ���
��� �	�����	��� ��� ������� 	� ���
�	��
 	��	 � ���
�
	�
� �	��
��� ������������
��� ���� �	����
� ������ ��� �
�	 ����������

� 	
����
����

��� �����
��� �����	 ����	� "���$ �	��
 ����	�����
�� -./ �� �� ��������
� ����������� ��	��
� �������	�
������0��� ��� ���� ����	� �	� ���� �� ���� � �	

���
��	� 	� ����������� ��� ��	��� �������	� ������
�� 	�
������
�	� ��� ���� �	 ���������
������ ��� ������
����� �	���������	� ��� �������� ��
�� �		� 	�������
-./ ���� ���� �

	
� ����� � �	

����	� 	� ��������
 ���
���� ������� ���� ���� �	����� ���� 	� ��� �����	��
���� �� -11/ � ����
�� ���� 	� ��� �	��
 �� ����	�����

"�� �*���$ ��� ���
��� �	 ���
	�� �������	� �������	�
����� ��� ���� 2��3�� �����! ��� ��	��
� �������	�
�	��� �	�� � ����������� ������! ���� �	�������� ����
	� ��� �����	���� ��� 	�������� ��� ���� �����	�����
"� 2�'$� -14/ ������������ � ����������� ��������
 ���
���� 5	��
! �
�	 ���
��� �	 ���
	�� �������	� ������
��	�� �����! ��� ��	
���	���� ��	������ ���� ����� ���
�	��
 ��� ������� �� �&������ 	� �����	���� ���
���
��� ������������

6��� ��� �������	� ����	������ 	� � ���
	�� 	� ������
���
 ������ ������� �� ���
����
��
� ���� �&������
�����	����� ��� �	��� 	� ��� ���
	�� ����� �	�����
��� ������ �������
��
� �����	���� ��� �����
����
	��� ��� ������� ������ ���� �����
� ��������� ���
������ 	� ���0�� �����	���� ���	������� �� ��� �����
�	�� 	��� ���� ��� ����� �
�	 ��� �������	� ����	��
������ �� ��� ���
	�� ����� �� �	���������
�

! �		�
�

 �����	���� �� ��� ������
�

 ���� ������ ���	���
�

 �	���� �� ��� ��� ��������� ���� �

 ��	��
� ���
�����	� ��	

���� �� ������ 	��� ��� ������ ������� ��
�� �������� ������ ����	��� �	��
 �� ����!
��� ��
-17/ 	� -14/! ��	����� 	� ��� ���	
��� ��������� "����
���	�� ������	��$ �	�
� �� �	���������� ���	����
	�� ��� ������
��� ��� ���� ����� ��� �	�
 �� �	
��� � ���� 	� ����� ���� �� �	���� ������� ����	�
���
��� 	� �������	��
 ������ 	� ���� �	��� ��� �� ���
���� ���� ����	���
� �� ��� ��	��� 	� ���	����� �� �	��
����� "���� ��� ������ 	� ����� �� ���! ��� ������ 	�
�����	���� �� �	
��$� �� �����	� 4 ��� #��� �	��
 ��
�	���

� ������ ��� ���
���� �	� ��� ����������� ���
��

���	������� �	�	
	����� ��� ���� ���� ������� ���
�
�8� ���� �	�
!
���� �� �	 � �	���������	� 	� �����	�
�	����� ��	����

*�����
� �� ��� ���	�� �
��� ���� �	��
�& ���
	��
���	��!
��� �		�� �� ����� ���	�� ��� ����������
 ���
�������! ��� �&�
��� ��� ������	�� 	� �
��� �������
	� ��	
	����
 -19/! �������
 -:/! �	��	
	����
 -1;/ ���
�����	
	����
 ������� -1</! ������� ��	� ��� ,	�
�
,��� ,�� -1/ �	 �	��� ���	� �	

��	����	� ���
	����

�� ������	�! �� �
�	 ��	
� �	
 �	 ���
� ���
	���
"������$ ���� ��� �	���� ������� �	�� ���
��� 	� ���
������ %	������� ��� #���������� ��������
 ������
������ �	��

��� ���� �	
�� ��� ��	���� 	� ���
����
�
���� ���
� ����������� ������� ���	�����	� ������
���� �������� �������

� ����� ���
��� �	�����	��� ��
��� ���
���� �� �����	� :
�

 ��	
! ����� ���� ���� 	�
����� ������� � ������ ���� �������� �	�� 	�� ������
�	�
�� �� �� �	���� ������� ���
��� ��� ������� 	� ���
�	��� ������� �����������	� 	� ��� ����� �	�� �	�
	���� ��
��� ����� �&�����
� ���� ���
��� ������ ���

��
� �������� �
�	�� ��� ���� �������	� ����	������
�� � ��

� �	������� �����
��� ��� ���� ������ 	�
�	���! �� ����� ���
��� ������

��� �	����
� ���
�����	�� 	� ���� �	��
 ��� ���������
�� �����	� = ��
�

 �� ��� ������� 	��	 ��� �	��
���
���
��������	�
� ���� �	� ��� �&�������� ���
����
�� ���� ���	��� >���

�! �	�� �	��
���	�� ��� �	����
�
������ �	� ������
	�� ��� 	��
�����

� ��� ��	�

���	���	�� ��� �����
� ��� ��� #���������� �����
����
 ������ ������ �	��
 ������ �� ���� �����	��
�� �&����� ��� ��������
 ������ ������ �	��
 ����
����	����� �� -./ �� ��������� � ������ 	� ��������

���� �� ��� �	��� 	� � ������ ��� ����� �	�������� ���
������� �	��� ��� �	���������	� ������
� 	���
����
�����	���� ��� �����
����� � �������� ���� �������	�
�� �����! �� ����� ��������� �

 �	��� ���� � ������	�
	� ����� �����	���� �	 ����� ������	����� �	��� �� ���
������ �

 �	��� ��� ��������
 �� ��� ����� ���� ����
����� ��� ���� ��� 	� �	�� �������! ��������
�! ��8� 	�
��� �����	�� ��� ��� �����	�� �������	� ��	����
����
������� 	� ��� ����	����� �� ��� �����	�� ��������	�
�
�	����� ���� �� ����! ��� �����
 �����	���� �������
�� ��� �	��� �	 ��?��� �
�	! ��� �����	����� ���� ��
�	���	��� ��� ��	�
���� ��� �����	�� 	�������� ���
�� ��?����� �� ����� �	��� #����� � ������ 	� �����
����� ��� �������� ��� ������� ������� �

 �����	����
���� ���� ���	��� � �	�� �	 ��������� �� ���� ��?��
��	� ��� ���������� ��
� ����

��� ��� ���� �����

5	�� �	���

�! ��� ��� � @ ���� � � � � ���� �	������ ���
�	��� 	� ��� ���
	�� ������ � � � �� �	������ ���
����� 	� �	��� ���� ��� �	�������� ��� ����� �� @�
��� � ������ ��� �	����� �������� 	� ��� #���� ���
��� 	� �	������ ��� ������	��� 	� ��� �	�� ���

�
 @ 1 � � ��� A	� @ ��� � � � "��� ��$ � �� "1$

���
	��		 � 	� � �	�� �� ��� ������ 	� ������	��� ��
���! �� @ �	��

�

 �	��� �	����� �� ��������
 ��������
 ������ ������

��� ��� �	

	
��� ��	�������

� ���� ���

�� ������� ������� �� � �	�� �	� �! �	�������� 	� ��

������ ������� 	�
 �����

� ���
��� ��

��� �	�����	�� ��� �������� ��
�!
��� ������

����� � �� ����� ��� ��	����
��� 	� � ����� ���
�
��� 4 ����	� ������ �� -./�

�� 	 4��""

 �$�4 B 1$ "4$

� ����!��" ���

�� �
�	����� ���� �� ��� 	��� �	��� �� -</ �� ����
�	 �������� �� ������
� �	� �
��� �	 ������
�	��

� ����!��" ��#������

�� ����� ��������� �� �����	�� ��� � ��	����
���
�	� 	� ��������� �	 � �	�� ������	����� ��� 	��
�� �� �������
� �	��� ��� ��� ���������	� �	�� ��
�
�	 ��
����� �� ����	��

� ����#�� ��� (���� �	�� ��� �� �����	� �	� ����
�	������ �
 ������ ������ ��� �������� ��� ����
���� ����� 	� ��� �����	������ �� �	������ �	 ���
��
� ���! ���� ��� ��� ��?�� ��	� �	�� �	 �	��� ���
�������� ���������� ��� ������� 	��� ���� �������
��� �����	���� ������� ���	��� ��� �	�� �	 ������
���� �� ���� ��?�� ��	� ��� ��
� ��� ������������

C���� ����� �	����	��
� ��� ��������� ��� ������
	� ���������� ������ �	 ������ ���� �� ��������� �	��
��
� �������
�

 �� ��������
��� �	�� �������������
��	����
���� ���� ������� 	� ��� �	��
 ������ 	� ����
����� �����	���� ���� ���� ���� ������� �� ��� �	��

��
� ��� �������
�� ������� ������� ����� ������
�	��! ��� ��� �� �	 ���������� ��� ������
� ��������
������	�� �� ��� ������

��� ��� ���# ���$�� ����

�� � ���� �&���
�!
� ����������� ��� �	��
 �	� � �����
������ ���
	��� �� ���� �	�	
	��! ����� �	�� ��� �&�
���
� 1 ������	��! ��� ���� �	�� ��� 	�
� ���
� �� ���
������ �	!	� @ ������ �	�
 � �� ���	�� @ ����!
�� @ 1�

��� ������
 	��������	� �� ���� ��� ��	����
��� ��"�$
�	� �� �����	�� �	 ������� 	��� � �	��� �� ���� � �	
�

	
� ��� ��������
�����������
��� ���������� � ���
�	�� ������� �� ����� ��������� �� ��� � ������ �	�

	� ��������� �	 ��� ��&� �	�� ��� ��� ���������� ���
������������

C���� ��� �	����	�

��
� @

�
�
�

�
@

�D

�D"�
 �$D

��"�$ @ ��
� �

�
	� "1
 �	�$

��� �� � � ":$

���� ����� ���� �	� � ����	� �	�� �� ��� ����! ��
���� �! ��� ������ 	� �����	���� ���� ������ ���	���
�� �������� ��	� ��� �	�� � ����� �
�� ��

�	

��
���

��
��

�
	�"1
 �	�$

��� ";$

�	! �	� ��� ������ ����! ��� �	��
 ������ 	� ��������
�����	���� ���	������� �� ��� �	�� ����� ���� � �� �0��

�	

�	"�$ @ �	-1 B

�����
���

��
���

��
��

�
	�"1
 �	�$

��� / "=$

�������� � ��
����� 	� ����	� ������ ������! ��� �	��
��
� �������	� ����	������ �� -./

�� 	 1
 ��
������ "9$

���� �� ������� �� ��������� �
����

�	"�$ 	

� "1
 ��$

��
"<$

��% ��� & ��" '����
��� ����

>�	� ��� ����������� 	� ���
���� � �	���� ���
	��!
��� ����������� �	�	
	�� �&���
� �� ��� ��	� 	����
��
� ,��� �������	��
� ���� �	
������ 	� ��� �������
�	�	
	�� ��� 	���� ��	������� ������� ���	��! �� �� ���
���
��� 	� �	��� �� ��� ����� 	� ��� ���	��
 	� ����� ���
�
��� ����� ����� 	�
� 4 �	��� ��� ���	���! �� ������
�� �� 4 ����	������� ������ *��	���� ���� �	�� �	���
������� �	�� ����	������� ������
��� ������ 	� �����
�
���������� ��8��

E	��� �	 ��� 	���� �&�����! ������� 	� �	�������� ���
��� �	�� �	 	�
� 1 ������	��!
� ��� �	����� �

 �	���
�	 �

 	���� �	���� �	!	� @ � ����� ��� �� @ ��
1�

�� ���� �	��������	�! �	� ��� �	��! �� ��� ���������!
��� ������ ���� � ����	� �����	��
�

 ������� �	 ��
��

�� @
�	�

��
 1

��� ��	����
��� ���� �� �����	�� ��� ������� � �	��
� ����� �� ��������� � �	

	
� ��� ���	���
 ���������
��	�
��� ���������� �� ��� �� �	! �� ��������� � ��
�����	�� ��� ���� �� � �	�� 	��� 	� �	�� �����
���
��	����
���

��
���

��
��

�
�"1
 ��$

���

��� ����� �

 �� �	��� �	����� �	 �����	����! ���
�	��
 ������ 	� �������� �����	���� ���	������� �� ���
�	�� ����� ���� � �� �0��
 �	

�	"�$ @ �	-1 B "��
 1$

��
���

��
� �

�
�"1
 ��$

���/ "F$

����� �

 ����� 	� �	��� ��� �	������� �	 ���� 	����!
���� ���� 	� �	�	
	�� �� ��&���

� �	���� ������� �	��
���
����� ��� ��� ������ 	� ����� ��	
� 0�������� ��
��� ������ 	� �	���� ���� �		� ���	��� �����
���
��� �	�
���� ���
	��� ������� �� �����
 ���
�����	��
�� ���� �	�����	��� �	 � �	���������	� ������
 ����
�	������ ���	����� 	� �	�� ���� "���� ����
���� 	�
� 2�'$�

� ������� ������� ������

G������ ��� ��	�� �&���
�� �� ����!
�
	�
�
��� �	
��� � ���� 	� ����� ���� �� �	
����� ������� ���	��

	� �	��� ��� �� ��� ���� ����! ��� ������ 	� �����
��	�
���� ��	
 �		 ����
��� ��� ������ 	� �	����
�
�	!
�
	�
�
��� �	 ���� ��� ���
��� ������� �� ���
��

� �	������� ����� �	 �����
 ���
��� ��� 4 �	���
�� � ���

 ������ 	� ������

%�� (��$� �����"

���	�� ����� ��� ������ ��	� �	��
�& ���
	�� ���	��

� ���� �	 ����� �	�� �	������ ��	� ����� ���	���

� � ����� ��
���	
�	
 �� ����� �� � ���� ���
���
��� �
	 �	���! �� ����� �� ��
���� 	��
�� �	 �	
��	� ��� �	�� �	 ��� 	���� �	�� �� �	

	
��� ���
����� 	� ��� ������

� ��� ���� �	���� ���
��� �
	 �	��� �� ��� ����
���� ������ 	� ����� ���� ���� �	 �� �	

	
��
���
��� ��� �	���� ���
���	�	� 	� � ����� �� ���
��&���� ����
����� ���
��� ��� �
	 �	����

� � ����� ����
 ����� ���! ������� ����
���� ������
	� �	���! � ��
�����
� ��	�� ���� ���
��� ��� �
	
�	����

� ���
	��		
����������� 	� � ����� �������� ���
������ �� ��� ������ 	� ����� � �	�� ���� ���
��	����
��� ����������	� ������	� � "�$ ����� ���
��	����
��� ���� � ����	�
� ��
����� �	�� ��� �&�
���
� � ������

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 5 10 15 20 25 30 35 40k

P
(k

)

>����� 1A #����� #���������	� 	� �� �����+�����
����
"�	
��$ ����� 	� 1777 �	���
��� � @ : ��� �� (��)	��
*+���� ����� "������$
��� � @ 7�71 ��� 1777 �	����

%�� (��$� �����	

��� !�
"���#$	��� 	� !# �	��

�� ��� ���� -F/ ���
��
����� �	��
� �� �� ������ �� �	

	
�A ��������
��� �
���	������� �	���! ����� ���� 	� �	��� �� �	�������

��� ��	����
��� �� %	���0����
�! ��� �	��
 ������
	� ����� �� � ����	� ������
�
��� �&�������	� ��
��

�"�$ @ �������
� � �
���� ������ 	� ����������� ��	��

������ ���� ���� ��	��� �	� ���� �	��
! 	�
���� ���
�	

	
��� ��� ���	�����
��� ������� �	 ����� �� �	 ���
��� � #���A

� �� � �
�"�$�� ��� ����� �� �	��

� �	��������

� ����� ������ ���� ��� ���

	�
� ��	������
����� �������� ���
��
	����������

�
��� ���
������ 	� �	��� ��� �� �	���������� ��	���

� @

�"�$

�"��$

� ��� ������ ����������	� �	

	
� � ���	���
 �������
����	�
��� ���������� �
 1 ��� �� �� �����
1 "������$ ��	
�! ���� ����� ���� ��� ������� 	�
��� �	��� ��� �	���������� ��	��� �� ! ����
����
�� � ������ �	�	����	�� ������

��� %����$�������	�� "%�$ 	� �
��	�&�		�	��

�� ����
���� �� -4/ �	 �������� �
��� ������� 	� ���
�
	�
� ����

	��� ���� ��� �

 ���
������� ���� ��! ����� ������ ����
�������	� �	

	
� � �	
���
�
 �	�
���� � A � "�$
 ��� �
�
	 ����������� ��� ������ �� ��� �	��������	� 	� ����
������ A

� '����� (���� �	�� ���� �� ����� �	 ��� �����

���� �	 � ��?����� �	��� �
����� ��������

� (�	�	�	����� ����
��	�� ��� ��	����
��� ���� �
��
 �	��
�

��� �	 �	��
 ������� 	� ��� ������
�� 	� �	��
 ��

H"��$ @
���
� ��

>	

	
��� ���� ��	������ ����
�� �� � �����
��� ���
���� ����������	� � "�$
 ��� �	�
���� �� I�� ����
����	�! ���� ���� 	� ����� �� �	�������� ��� ������
	� ����� �� �

��� �0��
 �	 4�� ��� �� �
�	 ��� ���
���

	�
� ��	�����! ��� ������� ����
����� ���������
����	&�����
�
	����������

�
��� � � �� �	������ �	
��� (��)	��*+���� �	��
! ��� ������ ����������	� �

���
����� ���� �	 � ��
 �	���
��� ���� ���� ������ "�� ����
�� ����� 1! �	
��
��� �� � @ :4$� ���� ����� ��� �����
�	�� �����	����	��!
��� �
���� ��J	���� 	� �	���
������ ��
 �	������	�� ��� �
�	 �	�� ���� ����
� �	��
������ 	���� ����� �	��� �
�� �� ���	����� �	
� �� ���
�	�	
	�� 	� ��� �����! ��
�

 ���	�� �
��� �� �����	�
;�

%�% (������ (��$� ����

�	 ����� � #��� �� ��� ��	�� �	��
�!
� ���� �	
������ ��� �����	�� �������	� ������	��� ��� �� �	��
����� �	 ��� ���� ��� �	������� 	���! ��� �	�	
	���� 	�
����� �	��
� ��� �	� �	 ������
� ��� ������ 	� �����
�	��� ��� ����
���
�! ������ �
���� ������ 	� ���
��	��� 	� �	���������	� ���
��� � �	�� ��� ����
������	���� '	���
��� �	�� �	������	��
�

 �������
�	�� �����	���� ���� 	���
��� ��
�� �	������	�� ���

�

 �		��� ����� ��� ������ 	� �����	���� ���������
�	� ��� ������� �������	� ��	����
����

������	�� �� ����� ����� �	
		� �� �	���
��� ��?�����
������� ��������
�� � �����
 ����	&�����	� �	 ���� ��
�	 ������ � ������	����� �	�� �� �	��

� �������!
���
������� ������ 	� �����	���� �	 ��� ������� ������
���� ������	��! �� � �	��
��� ������ �! ��� ������
	� �����	���� �������� �� ����� ��������� �� �0��
 �	

�� @
�	�	�
���

� ".$

��
� ��

 ��	"�$ ��� ������ 	� �����	���� ������� ��
� �	�� 	� ������ � �� ���� �! ��� ��	��� 	� �����	����

������ ���� ��������� �� ��� �������	� ��	"�$�	��

��� �������� 	� ���� ���� 	� ������
�

 �	������ �	
� �����
���� ��� ������ 	� �������� ���
������ ���
���	���� �0��
� 	��� ���� �������
���

��	"�$�	� @
�	�	�
���

�

�	 � �	��
��� ������ �
�

 �	������ �	 � �����
����
���� ������ 	� �����	���� �� ������� ��	���

��	"�$ @
�	

���
� "17$

>����� 4 ��	
� �� �

�������	� 	� ���� �	� � �� �����
	� 1777 �	���
��� � @ =� ��� ����� ��	
� �
	�� 	�
��� ������� ������ 	� �����	���� ������� �� ��� �	���
	� ������ = �� �	 1=� �

 �	��� ������

� ���� 177 ���
���	����� #�������� 	� ����� ������ ���� �	������ �	
� �����
���� ���� ���� ����	&�����
� ��	"�$ �����
�	�����

40
50
60
70
80
90
100
110
120
130
140
150
160
170

0 10 20 30 40 50 60 70 80 90 100

k=15

Time

k=14

k=13

k=12
k=11

k=10
k=9

k=8
k=7

k=6

k=5

N
u
m
b
er
 o
fA
n
ti
b
o
d
ie
s

>����� 4A ������� ������ 	� �����	���� �� �	��� 	�
������ � 	��� ����� �� � �� ����� 	� 1777 �	���
���
� @ =! �	� @ 7�1! �	 @ 177! ��� @ .�.<

�	! �	� �

 �	��� 	� ������ �! �� ����� ��������� ���
������ ���� � ����	� �����	��
�

 ������� �	 �� ��
�0��
 �	

��"�$ @

��
�	��

@

��
��
��� �

�	��

�� ���	��! ��� ��	����
��� ���� �� �����	�� ��� �������
� �	�� � ������ 	� ����� �� ��������� � �	

	
� ���
���	���
 ����������	�
��� ���������� �� ��� �� �	!
�� ��������� � �� �����	�� ��� ���� �� � �	��
���
������ � 	��� 	� �	�� �����
��� ��	����
���

��"�$"�$ @

��
���

��
���"�$

�"1
 ��"�$$
��� "11$

������ ���
������� ��� 	��� ��� ������ ����������	�
	� ��� �����! ����� ��� ���
 ����	&�����	� 	� ��� ���
���	�� �������	� ������	�� �� �� ��������� �����

�	"�$ @ �	-1 B "��
 1$

���
���

� "
$��"
$"�$/ "14$

� ���� �
� ������ ������
��

�� ��� �����	�� �����	�
� �
����� �	��� ���� ��� (*
��� �� ����� �	��
� �	����� ��� ��
�� ����� "���
����� �	�����
��� ���	�����$ ���� ��� ��

���	�������

����! ����������
� �������
� ��� 4�� ������ �� ����

�����	�
� ��� ����
�� ��	� ����� ���	�� �	 ��	
 ����!
������� ����� ��
�����
� ��
 �����! � #��� ��������
�� ����� ������ ��� ������� ����� ���� ���	� ����� ���
�������� ,��� �	��� ��� ���	��� ��	� ��� �����!
��� ����	������
�

 ������� �������

� ����
 � �������

������	
� �� ������� ��� ��� ����� ������
� �	

������

�� ��� �	

	
���! �
	 ����� 	� �	�� ���	��
 ���
		���
��� !���� ���	���
	 �� ����
���� �� ���	���� ����
�	�
� ��
����� �	��� ��	� ��� �����! �	�����	�����
�	 ��� ����	� ���
��� 	� �	���� �� ����
� ���	���
	
��� �	�� �	������� �	��� ��� ���	���! ����
����� �
�������������� ������
��� �� ���� ���������� �?���
�� �	����
��

)�� *��#�	� '� 	��� ��+�

2		���� �� ��� ������
 �����	�� �������	� �0����	�
14! �� �� �
��� ���� ����� ��� 4 ��
��� ���� ���������
�	

�

 � #��� �������� ����� ���	� 	� ������ �	��
����	�� A ��� ������ 	� �	��� �� ��� ��"�$� ,�
�

�	��������� 	� ��� �� ����	�� �� ��� ����� ������ ��
���	 4 	� �	�� �����! 	�
����	��! ��� ��� 	� �	���
���

���� � �	�� �� ��� #��� ��� �	��������� ��� ����
���
�
������ �	 ��� 	��� �� ���� �
������ ����� �	"�$
���
��
�����
�
��� ��� ������ 	� �	��� "��$! ����
�����
� �?���� ��� �������	� ����	�������

��� ��
����� ��8� 	� ���
������ �
����� "���� ��� �����
��	� 	� �

 �	��� �	������� �� ���
������ �
�����$ �� ��
�������	� 	� ��� ����� 	� �����������	� 	� ��� �����
-1/� >������ : ��� ; ��	
 �
	�� 	� ���� ������� �	� ���
(* ��� �� �	��
�! ����� �	�� ��� ���	� "�	
��
����$
��� ������ "������
����$ �	�����	��� ��� ����
 �����
�	� ��� �
	�� �� ��� ����	��

���! ����� �� �	�����	���
�	 ��� �������	�
���� ���
������ �
����� �	������ �

�	��� ���� ��� ���

��� �� ��� ������

)�� ,���� �������
�

%	��� 	� ��) -=/ ��� %�

�
�� 	� ��) -;/ ���� ������� ���
�����������	� 	� ����	� ��� ���
������ ������ �����

����	� �	�� ���
����� >	� �	�� �	��
�! ���� �	��
���
���� ����� �&���� �
����
�� ���	����
 �� �	� ����������
��	� ��
���� ��� ����� ������ �	
� ���	 ���� �
�������
>	� (* ������

�� @ 1

1

��

���������� ���� ���
����� ��� 	������
 ������� ������
	� ��� ���
	��! ���
����� ��� ������ �� ��� ��������

>	� ���
� >��� ������
��� � � :

�� @ 1

1

���
����
 1

�� � � : �	
���� "�� �� ��� �� �	��
 ���� ����! 	�
��� ��������$! ���� �������
 ������	
� �	�� �	� �&��� �	�
������� �������� >	� ����� �������! � �������
 �������
	
� �� �������� �
��	��� �� � ���� ���� �	�� ���	��

������	� � 7�..�

>������ : ��� ; "�	
��
����$! ��	
 � ��������
 ����
�
���	� �	� � (* ��� �� ����� ����� ����	� �	��
���	��
� �� ���������! �� 1
�� @ 1
"7�779 � =77$ @
7�< ��� (* ����� ������ �	 �������� ���	 ���

 �
������!

��
� ��� �� ����� ��	
� �	 ������ �����������	�
������	
�� �� �������! �	�� �	��
� �&����� � ����
���� ������ 	� ���	� �	
������! ��������� �������

� ��
����
 � ���� ���� ������ 	� �	�� ���
����

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Fraction of Nodes Removed

S
iz
e
 o
f
L
a
rg
e
s
t
C
lu
s
te
r

>����� :A *�
����� ��8� 	� 2������ %
����� �� � (*
�����
��� � @ =77! � @ 7�779 ��� ����� ��� 	 :
����� (��	� "�	
��$ ��� ������ "������$ �	�����	���

)�% ����
- �������
�

�� �	� ������ �	
������! ��� ����
�� ������� �� ��� �	��
������ ������ ������� �	������� ��� �	� �	 �
��� ����
>	� �	�� ����� �	��
�! � ������ ������	
� �� ���
����� 	�����
��� � �������
 ������	� 	� �	��� ��� ���
�	���� ��� ������ �

������� ���� �
���
�� ��� ��

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Fraction of Nodes Removed

S
iz
e
o
f
L
ar
g
es
t
C
lu
st
er

>����� ;A *�
����� ��8� 	� 2������ %
����� �� � ��
�����
��� � @ =77! ��� ��� 	 : ����� (��	� "�	
��$
��� ������ "������$ �	�����	���

�	��
 �� ���� �	�� ��������� �	 ���� ���� 	� �	�� ���
�	��
 ������� �� �	������ � ��
! ���� ���	����� �	���

��� � ���� ���� ������ ���� �
�� �� ���	����� �	
�
�� ��� ������� �	�	
	��� ,��� ����� ��� ��	��������
�
���	���! ��� ����� �		� �	

������ K�� ������ ����
�
-=/ �	��
���� ���� �	� ���
������ ������
��� � � 4 ����
� �������
 ������	� �&����� ����� ��� �� �	��
�� �������

������	
� �� ������ ���� ��� �� �	��
��! �� ��	�
� ��
���� �� �	
������ ������� ������� �� ��������

! "������� ����������
�

�� ����! ��� ��	�� �	��
 ��� ���
���� ��� �� ���
���
�	 �
���� ������ 	� �	�����! �	� ���������
� ��
����
�	 ��������
 ������ �������� �� ����! �

���� ���
�
�	���������	� ���
	��� �	�������� � ��	����
����� �
�
����� �� ��� ��������	� 	� ���	�����	� �&������� ���
��� �� �� � �	��
� ��� ����
�
�

���� 	����
��� �	
�	�� �	����
� ���
�����	�� �
	��
� ��
���� �	 ��� 	�����
��
 ��	�� 	� ���� ������

.�� �$$��
�����	

��� ����
�� 	� ����� �� �� �� � �
��� ����

�
�8���	�
	� ��� �������� ���� ��� �	�������	��
 ��� ���	��
�	��
�&��� �� ����������� 	��� ��� �	��� �� ��� �����!
���� ������ 	� � ���� 	� ��� �����	�� ��������	� ���
��	��
� �������	� ��	����� ,��
� ��� �����	���� ����
��
���! �

 �	��� �	��������� ���� �	 	�� ��������
�	��
���� �	

���� ��� ��������8�� ����� ����
� ���	
	�� ������	�� 5	�� ����������� �� � ���
� ����������	�
���
�����	�� ��� �	��� ��� �� �	������� �	�������
	��� � �	������ ���
	�� "� 2�'! 	� ��� ��������$ ����
���� ��� ���� ���
�����	� "���� � ,�� ������$� ���

��
����� �	������ 	� ��� �	���
 ���� ���L	� ���������	�
 	
 �������� 	� ��� ���
�����	�� ����� ��� �� ����
����� �� �	���	���� ��� �������
���
 ��

� 	�!
���
����� M��� �����	
	��! �� �		���� � ����	�����
� �	��
��	�
�� ���	 ��� M��� N�����
 5������� ��� ���
 ��Æ�
��
�� ���� �� �� ������ � ������
� ���	���� �	� ���
����
��� 	� ���	�� ��� ���������	� ��������� �������� ����
���� �� ��� �	���
 ������	�� 	� �
���� �	���� ���
��
����	�� �
���������
�! ������ ��� ������ 	� ������	����
	� � �	��
��� ��	����! ���� ������ ��� �� ����� ���	 ���
�	��� ��� ��� ��	���� ����
� ��� �� ���� �	 ���	����
���

� 	����� �����	���� ������	�� �	 ��� #���� K����
�	�����
����� �	�
� �� �	������� ��� ����� 	� ���� ���
���
��� ��� �������� �	������ ����� ������ ������
����	����� �� -1:/ 	� ��� ���
	�� �������	� �������	�
�	��
� 	� -14/ 	� -17/� >���

�! ���
�����	��
���� ���
�	�������� 	� ��� �	��
 �� ���� �	�� ���	����� ������
��� �
�	 �� ��������� �� ��	
� ��	��! ����� ��� �����
��	��� 	� �����! �� �������� �������

� ����� ���
��� 	�
������ �	�����	���

.�� ��$�����������

�

 ����
���	��
��� ��������� ����� � M��� ���
��
�������	� 	� ��� ��� ��� E���� ���	�� �
�	�������
��� ��� ������� ���� ��� �������� ���������� ������
�������	� 	� � ������
�8�� ��88� ��� ���	�� ����� 	���
>	� �	�� ������������	��! �� ���
���� ��� �&�	������

���� "��	� -./$ ��� ������ "��	� -9/$ �����	�� �������
��	� �
�	������! �� ��� ��������� ��� 	�����
 �����	��
�	���	
	�� ����� �� ��������� �
�	����� ��� ���
����
������ ����	��� �	��
� ���� ��� ������� �����	��
�
	����� �� ��� ���� ������ 	� ��������� ��������

������� �������� ��
���� �	 ������ �����	���! ��� ����
���������� 	� ��
���� ����� ��� 	� � ����������� �����
���

� �������� ������ ����� �������� ����	 �	��	�
�������	� �
�	������ �	 ���	�� ��� ��
������ � �����

��	������ ��� ���� ���
� ���� �

	
� ��� ���� �	 �	��
���� �	 ���������� �
�� 	� ���������! �����
�8� ��� ����
�� :# ��� ��0���� ��� ��
������ �

 ������� 	� ��� ���
��� �� ����� ��� � EC� ��� ���� ������	�� ��� ��
�	���	��� 	� ��
 ���	���� ����� �	 �������� ��� ���
��
�� ��	� ��� ������! ������
 ����
�� ���
�����	��
���

����� �	������ ����� ��� ���������� ����	�� �	� ���
#��� �	��
 ��������� �����

��
��
���
 �
� $
�
�� ��������
�

/�� '��
� 	���

,� ���� ��	
� �	
 �	 �	�������
���� ���
� �	���� ����

	��� 	� �	����������� ��������
 ������ ��������
� ��
 �	��
 �	� � #���������� ��������
 ������ ����
����
�� ����	������ ,� ���
���� ��� 	
 	� �����

�	���� �� ���� #��� �	��
 �	� ��� �����������! ��

�
�	������� ��� ��������� ����� �	�	
	���� �� 	���� �	
������ �� � ��������	� �	� ��� �������	� ����	������
	��� ���� �� ��� �	���� ��� ���������� ��� ���������
����� 	� ����� �	�	
	����
��� ������� �	 ���	���� �	��
�������	� ��� �	�� ���
��� �	
������
��� ���������
����� ����
�� ��	� ������ ��� �	��
�& ���
	�� ���	���
��� ����������� ��� ��

� �	������� ������
��� �	�
�	���� ������� �	�� ���
���� 	� �	������ �		 ����
���	������ ��� (* ��� �� ������ 	� ��� 	���� ����
������� �&��

��� ����� �	�� ���
��� �	�����	��! ���
������� �������

� �� ����
 ���� ���� ���
��� ������ ���
����	�� ���
 ���� ��� ������� �	��������	� 	� ��� ���
������ �� ����
� ���� ��	
� �	
 �	 ������� ��� ���
�����	� ����	������ �� � #��� ����� ����� ����� 	�
�	�	
	����� ���� ����
� ����� �� �	����
� �	 ���
�
����
���
� �	���� ���
	��� 	� ��������
 ������ ��������

/�� & � �� ����
����	

��� #��� �	��
 ��
�

 �� ���� ���
��������	� ���
�������
� ����� �&������ 	� ������
 ��	���� ,	�� ��
�����
�� �	 ��������
�8� ��� ����� ���
���� ��	�����
��� ����� �	�	
	�� �	��������	� �
�	����� �� ���� ����
���� ����� ���� 	�� ������
 �	�� ���� ��	
� ��� ������
����� ��������� �	 ����������

� ���
� ��� ������ ����
�� �����
����� �	� ����
���� ���
� ���
	��� ��� �������
	�� ������� �� ����	����� � ����
� �	��� 	� ���
���� #��
�	 ��� ���

�
	�
� ��	������� 	� ��� ������! �� �� �	��
���
� �	 ����� �� ����� �	�� ��� ���
��� �	 ��� ��

�	��� 	� ���� � ��
�����
��� ����� �	��������	� �
�	�
����� ���� ����	��� ���� 	������
 �	�	
	���� ��	�������
"���� ������ ����������	�$ ����� �	��� ���� ���� ���
�	����

��	���� ����� ���� �	 �������� ��� �������	� ����	��
����� �� �&������� ��� ������ ������ ������	�� ��
��� ��	
	����
 ������ ������! �	
���
�� 	� ��� ��
*�� +����
������������ �����	� �
�� ��� �	
� 	� �����
�	� ��	�	������� ������ -1=/� ���� ���� �	 ��������
��� ������� ���� �� ��� ��

 ������� �	 ��� ������
�������� � ��

�� (��� ���������
 ��� � ��?����� ��� 	�
56% �����! ����
���� �� � �
����
� ��?����� ����
�����
������� ��������� ���� ����	����� � �	������ ����������
�	,	� �?��� 	� ��� 	����

 �������� 	� � �������� ����
�?��� �	�
� �� ���	��	����� �� ��� #��� �	��
 �� ����
������ �� -11/ �� �����

��� � ����	� ���������	� ����
	� ��� ��
� �������� ���� ������� ��� ��	��� 	� �	
��
-9/ �� ��� �����	�� �����! �������

� ���� ��
���������!
����������� ��� �������	� ��	����
��� 	� ��� �������

'	� 	�
� �����	���� �	�
� �� �����
���� ���	���	��
��� #���� �� ������ ����	��� �	��
 	� �����	��

������
� �	��
 -11/ ��� �� ���
���� �� ��� �	���� ��
�	�
� ���� ��� ������� 	�����	�� �	 �
	�� ���������

�����	����� ����
��! ���	�����	� ��	�� ��	��
��� ��
���	������

� ��� �����
� ����������� ���	���	�� ���
������ �������

��� ����	�� ��� �	
 �� ��� ��	���� 	� ����������� �����
����� ���	 ��� #��� �	��
 ��� �������� ��� ���
�����
����	� ���	�����
��

% ���
�����&��
��

����
	�� ��� ���� ����	���� �� #���;� >����� �����
�	
	����! 2�����! ��
���� ��� ����
�� *�������! �����
��
�! ��
����� M	��� G����
	�
�
��� �	 �����
I���	 *	��� �	� ��� ��
���
 ��������	�� ��	�� ���
����������� *������ ,���
��
	�
�
��� �	 �����
I�	�� I���� *	�� ��� I�	�� #	��
� 5����� �	� �����
����	���

'�(���
���

-1/ *� �
���� ��� ���2� �����+���! ��������
 	
����
�
� �� �����	� �	������! �� *����
� 	� 5	����
I������ <;! ;<! 4774�

-4/ ���2� �����+���! *� �
����! !�	��	�
	 �� �
�����
�� #��
�� �	������! ������� 4F9! =7.�=11�

-:/ E� �����	��! ���2� �����+���! %��	�!����	��

��
	������� ��
����	� �	������! �������
��O��A�	������L71144; 1: '	������ 4777

-;/ #� �� %�

�
��! 5� (� M� '�
���! �� 6� ���	�
���8 ��� #� M� ,����! �	����� �������	�� ��

��������� - (�
������� �� ���
�� ������! �������
��O��A�	������L777<:77�4 1. K��	��� 4777

-=/ *� %	���! G� (��8! #� �����������! �� 6��
��!
#	����	�
	 �� ��	 ���	��	� �� ���
�� ��	��
����!
������� ��O��A�	������L777<7;F�4 1. K��	���
4777

-9/ I� #������
���! �� >	�����! I� 6�
���� �� ���
��������
�� ������
� ��
����	
	�	
���� - ���

��������. �������� ��
 �����
������! �� I�	�����
���� 	� ��� 1..9 �(((����	���� 	� *������� ��
�������� ��� I������! ����� 117�11.! �(((%	��
����� �	����� I����! I������
��! '�
 M������

-</ I� #������
���! &����	� 	Æ
�	�� ���������� ���
�	�	������ ������
� �������! ��������
 *��	��
%�.=�:! ��� C��������� 	� '�
 5�&��	! �
���
0���0��! '5! 1..=�

-F/ I� (��)	�! �� *+����! 1.=.! I��
� 5���� #�������
/! 4.7�

-./ �� >	�����! �� �� I���
�	�! 2� �

��! *� %��������!
�	�������	��
��
���������� �� �
�����	�)! ��
I�	�������� 	� ��� 1..; �(((����	���� 	� *��
������ �� �������� ��� I������! 2	� �
����	�! %�
A �(((%	������� �	����� I����! 1..;�

-17/ ���� 6	�����! �� ����������
�� �
	� �� ����
������	
 �	�	
���� ��
 ��� �����
����� �� ����

���	� �	
�����! I��#� ������! C��������� 	� '�

5�&��	! 5�� 1...

-11/ �� �� 6	�����! �� >	�����! ��
���	
���	 ��� �� ���
���
��� �����	 ����	�! �� (�	
���	���� %	����
��	� F";$A ;;:�;<:! 4777

-14/ M� G��! I� ����
��! �� �����
��� �����	 �
	�
��� �	����� ��������� �	�	
����! I�	�������� 	�
��� <�� (��	���� %	������ 	� ����

����� �����
��0��� � �	�� %	������� "(C>���..$� ������!
E������� ��������� 1:�1.! 1...�

-1:/ E��� �� 2��	��! *� (� 5����
�����! #� �� N��
N�
����8��! � ���������	
 ��
���	
���	 ��� � �	���
�
����,	 ������	� /���� �����	 ����	�! %����
��� 11 �� '�
 ����� �� K�����8���	�� (��! %	���!
#	���	! ��� E
	���! 5�E��
 6�

! 1...

-1;/ 5� (� M� '�
���! !����	��	�	
 �	������ ��
 ��	
�����	 	0	
� ���� 1�� ��� ���� ���	�
� ��	 �	��
!
������� ��O��A�	������L71117<7�1! = '	������
4771

-1=/ I� I�����! ��	 �����	 ����	�! E��
��� I���

������L(
������ �������! 4777

-19/ *� I���	�����	����! �� N���������! 2������

������������ �� �����	� �	������! �������
��O��A�	������L717<49<! :7 M�
� 4771

-1</ �� 6� ���	���8! !�������� �����	� �	������! '��
����! N	
 ;17! �49F�4<9! 5����

�� 5���8����
2���! F 5���� 4771

Information Immune Systems
Dennis L. Chao and Stephanie ForrestDepartment of Computer S
ien
eUniversity of New Mexi
oAlbuquerque, NM 87131 USAfdl
hao,forrestg�
s.unm.eduAbstra
tMany people are exposed to more informa-tion than they
an pro
ess e�e
tively. Wedes
ribe an approa
h to building an informa-tion immune system that eliminates undesir-able information before it rea
hes the user.This approa
h is inspired by natural immunesystems that prote
t us from pathogens. Thepotential appli
ations of an information im-mune system in
lude �ltering out undesirabledata, generating a variety of solutions to a de-sign problem, and �nding
onsensus solutionsto problems.1 Introdu
tionInformation overload is inevitable in a world that pro-du
es over an exabyte (one billion gigabytes) of infor-mation per year [28℄. We will
ontinue to produ
e and
onsume more and more information, so we must �ndinnovative ways to manage it. Although �nding andmanaging information are a
tive resear
h areas, mu
hof the e�ort is dire
ted towards a
tive strategies su
h asinformation retrieval. Although these te
hniques helpindividuals lo
ate desirable information, they also a
-
elerate the information glut.In this paper, we outline the features of an informa-tion immune system (IIS)1 that
ould help people dealwith the glut of data. We draw inspiration from natu-ral immune systems that prote
t us from a seeminglylimitless number of possible invaders su
h as ba
teria,viruses, and parasites. We believe that an IIS
an be
onstru
ted to eliminate undesired information afterdete
ting it in a manner analogous to the natural im-mune system's. Su
h an IIS would be situated betweenan individual and a stream of information as a media-tor. Instead of a
tively bringing more pie
es of infor-mation to our attention, it will quietly
ensor unwanteddata.1The term \information immune system" was intro-du
ed by Neil Postman (in [39℄ and [40, page 63℄).

An IIS should be
apable of learning what kinds of in-formation a user wants and dis
arding the rest. Thetask of distinguishing what is desirable is a diÆ
ultone. We propose taking one of the approa
hes used byour natural immune systems, whi
h
an \remember"a pathogen that infe
ts us so it
an eliminate it morequi
kly in future en
ounters. An IIS
an do this bystoring examples of reje
ted information and
ensoringsimilar data. If the memory of the system is too spe-
i�
, this approa
h is likely to be ine�e
tive. Pathogensand information
an mutate over time, and our im-mune systems must be able to generalize. Therefore,both the natural and the information immune systemsmust also learn to eliminate related pathogens whiletaking
are not to harm anything else.An extension to a personal IIS is a group IIS. If oneuses the IISs of many individuals in serial to �lter astream of information, the only information that
ansurvive all IISs is the information that everyone �ndsdesirable. We
all su
h information \
onsensus solu-tions." Consensus solutions are useful in shared envi-ronments, su
h as broad
ast musi
 or artisti
 displaysin publi
 spa
es. We will outline the relationship be-tween a proposed IIS and a natural immune system,propose some appli
ations of an IIS, in
luding infor-mation �ltering, intera
tive design, and
ollaborativedesign, then summarize the results of an experimenttesting an IIS implementation.2 Related workSeveral areas of resear
h have in
uen
ed our
on
ep-tion of an IIS. An IIS must be able to learn frompast en
ounters, and the issues of learning and mem-ory have long been addressed by the �elds of arti�
ialintelligen
e and ma
hine learning. The primary taskthat we propose for an IIS, information �ltering, hasbeen explored by the �eld of human-
omputer inter-a
tion. Collaborative �ltering may be relevant for IISsthat
lassify data that are diÆ
ult to evaluate algorith-mi
ally. A few
ollaborative �ltering systems make re
-ommendations to groups instead of individuals. Thesegroup re
ommender systems perform a fun
tion similarto a group IIS. Finally, an IIS should be informed by

earlier work in arti�
ial immune systems. All of thesein
uen
es are brie
y dis
ussed below.Case-based reasoning is a te
hnique that adapts solu-tions to past problems to solve similar
urrent prob-lems [44℄. Memory-based reasoning [49℄ and instan
e-based learning [1℄ are related s
hemes that use the solu-tion of the most similar previous problem. Systems us-ing these approa
hes learn by \remembering" spe
i�
past events rather than
reating rules or generaliza-tions. Immune memory uses a form of instan
e-basedlearning; the parti
ular response that was e�e
tive in
learing a pathogen will likely be used in future en-
ounters with related pathogens [29, 43, 5℄.Asso
iative memories, often
alled
ontent-addressablememories, are neurally inspired ar
hite
tures that
anretrieve items using approximate addresses. Smith out-lines the parallels between Kanerva's sparse distributedmemory [25℄ and the memory of the natural immunesystem [47℄. The memory of the natural immune sys-tem is not exa
t, and exposure to a novel pathogen
aneli
it the response primed by a related pathogen.The term \information �ltering" refers to a large rangeof te
hniques used to remove data from an in
omingstream on the basis of user- or group- spe
i�ed pref-eren
es [2℄. Early approa
hes used simple rules [30℄or signatures (e.g. keywords) to identify undesirabledata to blo
k. These approa
hes are still popular, andmany
ommer
ial produ
ts, su
h as Cyberpatrol [9℄ forweb
ontent and the Realtime Bla
khole List [41℄ andBrightmail [6℄ for e-mail,
ome with long lists of rulesand signatures, whi
h
an be e�e
tive in blo
king un-desirable data but are vulnerable to mali
ious sour
esthat
an
raft information to bypass them. To thwartthese adaptive adversaries and to personalize the �lter-ing, the user is often allowed to spe
ify additional rulesfor a

epting and reje
ting data. Unfortunately, thespe
i�
ation of su
h rules is often diÆ
ult and error-prone, and therefore not used routinely. An IIS shouldin
orporate reliable signatures of undesirable data asa �rst line of defense to be supplemented with moreadaptive te
hniques to provide better and more per-sonalized
overage.Several resear
h systems simplify the �lter spe
i�
a-tion problem by pla
ing the burden of generating ruleson software rather than on a user or programmer. In-fos
ope [14℄ monitors a user's behavior to
reate rulesfor Usenet newsgroup �ltering. The system suggeststhese rules to the user, who
an a

ept, modify, or re-je
t them. Maxims [34℄, an interfa
e agent for e-mail,also generates �ltering rules based on user behavior,but it suggests a
tions for the user to take rather thanrules when it is
on�dent in its predi
tions. Rule-basedlearning s
hemes often require many examples beforethey
an infer new rules. In
ontrast, an IIS using aninstan
e-based learning approa
h
ould learn to blo
ka
lass of data upon seeing only a single exemplar.Collaborative �ltering uses the preferen
es of others

to help an individual make
hoi
es [31, 16, 42℄. Forexample, a
ollaborative �ltering system would re
om-mend an item for a person to pur
hase by
hoosing anitem pur
hased by someone with a similar pur
hase his-tory. By harnessing the
olle
tive preferen
es of manyindividuals, su
h systems
an infer similarity betweenitems without needing to understand the relationshipbetween them. This approa
h is useful when it is dif-�
ult for a program to determine similarities betweenitems, su
h as art or musi
. An IIS
ould in
orpo-rate
ollaborative �ltering te
hniques to determine thesimilarity between items for its asso
iative memory
a-pabilities.There are a few systems that re
ommend items togroups instead of individuals. Musi
FX [32℄ sele
ts mu-si
 stations that are broad
ast to a gym full of people.The members of the gym must rate all the stations be-forehand, and Musi
FX plays one of the stations withthe highest average rating. One short
oming of Mu-si
FX is that it apparently does not s
ale to a largenumber of
hoi
es. If the users were not able to eval-uate all of the stations, the quality of the system's
hoi
es would likely be degraded. GroupCast [33℄, de-veloped by the same resear
h group, used a
on
ep-tually similar s
heme to display
ontent on a publi
display system. Unfortunately, they found that thene
essary user pro�les would have been too large forany user with a reasonable amount of patien
e to
om-plete. In addition, without extensive pro�les it wasdiÆ
ult to �nd appropriate interse
tions of user prefer-en
es to put on the GroupCast displays. Instead, theydisplayed
ontent that was interesting to one of theusers, hoping that by
han
e others would have similarinterests. PolyLens [36℄ re
ommends movies to smallgroups of people who wat
h movies together. This sys-tem applies a standard
ollaborative �ltering algorithmto make re
ommendations for ea
h of the group mem-bers then
ombines the results to make a group re
om-mendation. These systems give insight into the natureof �nding solutions for groups. Notably, it is diÆ
ultto make re
ommendations that satisfy all members ofa large group.Immune system inspired algorithms have often beenused for anomaly dete
tion. They draw on themetaphor of the adaptive immune system's ability todistinguish between self, or normal data, and nonself,or anomalous data. One of the �rst su
h systems wasthe negative sele
tion algorithm introdu
ed by Forrestet al [15℄. The algorithm generated random strings andthose that were similar to sequen
es of bytes in a given
omputer �le were eliminated. The surviving stringswere therefore not similar to any in the �le. If one ofthese strings ever mat
hed the
ontents of the �le, thenthis indi
ated that the
ontents had been
hanged sin
ethe training period. These strings were used as nega-tive dete
tors to dete
t novel sequen
es of bytes, su
has those introdu
ed when a virus
orrupts or infe
ts a�le. The ARTIS framework is an extension of this work

that applies negative sele
tion to dete
t anomalies instreams of data rather than in stati
 data sets [18, 19℄.This framework was used to
reate systems to dete
tnetwork intrusions [18, 19, 27, 54℄.We believe that most useful sour
es of informationpresent
ontinually
hanging streams of data, so that itwould be undesirable for an IIS to reje
t all novel data.The IIS is inspired by the immune system's ability toremember past en
ounters with pathogens, while thearti�
ial immune system approa
h to anomaly dete
-tion is usually based on the immune system's ability todete
t novel foreign proteins. The anomaly dete
tionability of ARTIS
ould
omplement an IIS for
ertainappli
ations, but for many appli
ations we imagine us-ing negative dete
tors without negative sele
tion.Many
omputer s
ientists have developed arti�
ial im-mune systems based on idiotypi
 network theory [24℄.The idiotypi
 systems fo
us on the dynami
s of the in-tera
tions among similar antibodies and antigens. Al-though many do not attempt to reprodu
e the behav-iors seen in the natural immune system, they have use-ful properties that have been applied to sear
h [4℄, data
lassi�
ation [21℄,
luster dete
tion [50℄, and data min-ing [12℄. The
lassi�
ations produ
ed by idiotypi
 ar-ti�
ial immune systems
ould potentially be used asmetadata to enhan
e the dis
rimination of an IIS.3 The immune system as aninformation �lterWe believe that an IIS
an borrow several patternre
ognition me
hanisms from the natural immune sys-tem. Our natural immune system
onsists of two
om-ponents that use di�erent pathogen re
ognition strate-gies. The innate immune system uses a few reliablesignatures of foreignness to identify invaders, whi
hJaneway
alls pathogen-asso
iated mole
ular patterns(PAMP) [22℄. An example of a PAMP is the mannose
arbohydrate mole
ules found on many ba
teria andother pathogens but not in mammals [48℄. These sig-natures have been stable over evolutionary time andare en
oded in the genome of our immune systems.This strategy is used by many of the signature andrule based information �ltering produ
ts mentioned inSe
tion 2. These produ
ts
ould serve as a �rst line ofdefense, playing the role of the innate immune systemin an IIS. However, not all signatures of pathogenshave been (or even
an be) anti
ipated, and evolutionwill favor pathogens that do not
arry the signaturesre
ognized by our innate immune systems. One roleof the adaptive immune system, dis
ussed below andoutlined in Table 1, is to dis
over the signatures ofpathogens not
overed by the innate immune system.In the following subse
tions we des
ribe some issuesthat an IIS must fa
e and how one
an draw inspira-tion from the natural immune system to address them.

Natural IS Information ISshape spa
e parameter spa
eself desirable informationnon-self undesirable informationhelper T
ell user's judgment
ostimulation reje
tion of information byuserna��ve
ells impli
it (not instantiated)a
tive lympho
yte dete
tormemory lympho
yte dete
tor
ytolyti
 a
tivity
ensor solution
ross-rea
tive radius dete
tor radiusthymi
 sele
tion prote
ting known desir-able informationillness user exposed to undesir-able dataTable 1: The immunologi
al analogy made expli
it.3.1 Negative dete
tors and shape spa
eAn IIS should be able to remember whi
h pie
es of in-formation a user reje
ted in the past so it
an
ensorthem in the future. However, the strategy of reje
t-ing ea
h item individually is ine�e
tive when one isfa
ed with a seemingly limitless variety of information.An IIS must be able to generalize; reje
ting one itemshould impli
itly reje
t similar items. The natural im-mune system has this ability.The adaptive immune system has a repertoire of lym-pho
ytes that dete
t pathogens. Ea
h lympho
yte isspe
i�
 to a parti
ular antigen, or protein signature,expressed by pathogens. If a lympho
yte dete
ts a
ellwith a mat
hing signature, it may destroy it. How-ever, pathogens may mutate and subtly
hange theirantigeni
 pro�les, so lympho
ytes should also be ableto re
ognize
lose variants. Perelson and Oster sug-gested the
on
eptual framework of shape spa
e [38℄,a high-dimensional spa
e that represents the universeof possible antigens. Every antigen has a lo
ation inshape spa
e, and small mutations in a pathogen mayalter its proteins, thus shifting its lo
ation in shapespa
e. For a lympho
yte to be e�e
tive, it should beable to
over a large enough area in shape spa
e thatmost mutations would not evade dete
tion. The areain shape spa
e that a lympho
yte
overs is sometimesknown as its ball of stimulation be
ause it is postulatedthat a lympho
yte
an re
ognize an antigen within a
ertain radius of its lo
ation in shape spa
e.An IIS
ould use negative dete
tors to
ensor informa-tion that the user does not want. As with the naturalimmune system, a dete
tor should be able to
over avolume in shape spa
e, not just a point. Therefore, itis ne
essary for an IIS to have some notion of the sim-ilarity between two pie
es of information. Two itemsthat are similar are
lose in \information spa
e." Col-laborative �ltering te
hniques
ould be used in
asesin whi
h it is too diÆ
ult to de�ne a fun
tion that en-

odes the subje
tive similarity between two pie
es ofinformation.3.2 CostimulationBe
ause everyone has di�erent informational needs,ea
h IIS user should be able to de
ide whi
h types ofdata to reje
t. Many information �lters require theuser to write rules to
ustomize the �ltering, but webelieve that the user should need only to identify ex-emplars of undesirable information. On
e the user re-je
ts a pie
e of information, an IIS should be able toautomati
ally reje
t similar information in the future.In the adaptive immune system, helper T
ells aregenerally required to
ostimulate, or a
tivate,
ells inthe presen
e of a novel pathogen. Helper T
ells pro-vide
on�rmation that a pathogen should be elimi-nated. This pro
ess redu
es the
han
es of immune
ells atta
king the body, whi
h is known as an autoim-mune response. On
e
ostimulated, the e�e
tor
ellbe
omes a
tive and
an attempt to eliminate the in-vader, whether by releasing antibodies in the
ase of B
ells or by killing the infe
ted
ells dire
tly in the
aseof
ytotoxi
 T
ells. Some
o-stimulated
ells be
omememory
ells, whi
h are long-lived. In future en
oun-ters with the same pathogen, memory
ells have lesseror even no
ostimulation requirement.In an IIS, the user
ould adopt the role of the helper T
ells by providing
ostimulation signals to the system,an idea introdu
ed in [19℄. The idle
ells waiting for
ostimulation are impli
it|only dete
tors
orrespond-ing to a
tive or memory
ells need to be instantiated.When the user reje
ts a pie
e of information, a de-te
tor spe
i�
 to that item would be
reated. Thesedete
tors would prevent any similar data from beingpresented in the future. The user's only responsibilitywould be to inform the IIS when undesirable data arebeing presented.3.3 The addition of negative sele
tionWhen the user has reje
ted a suÆ
ient amount of in-formation, the spa
e not
overed by dete
tors approx-imates the spa
e of useful information (Figure 1). Un-fortunately, useful information that is too similar tounwanted information runs the risk of being
ensoredby an IIS negative dete
tor. Therefore, we suggest in-
orporating a te
hnique that the adaptive immune sys-tem uses to prevent the immune system from atta
kingthe body's own
ells.The adaptive immune system uses thymi
 sele
tion toeliminate T
ells that may harm the body. Before T
ells
an enter the repertoire, they are exposed to alarge sample of the body's own proteins. Those thatbind too tightly to one of the body's proteins are elimi-nated in a pro
ess known as negative sele
tion. There-fore, the T
ells that survive are not likely to re
ognizea self protein.

X

X

X

X

X

X

X

X

X
X

X

X X

X

X
X

X

X

X

X

X

XFigure 1: Coverage in the model without negative se-le
tion. The shaded regions represent information thatis useful. The
ir
les represent the extent of a
tive de-te
tor
overage. The Xs without
ir
les represent thedete
tors that should never be
ostimulated be
ausethey are within the regions of a

eptable solutions.A similar strategy
ould be employed in advan
e by anIIS to prote
t types of information known to be useful.These types
ould be de
lared \o�-limits" to the IISand would be allowed to bypass the IIS to rea
h theuser. This is espe
ially useful when the
hara
teristi
sof
ertain desirable information are known a priori.For example, the IISs of a
ompany's employees shouldprobably not be allowed to eliminate oÆ
ial
ompanye-mail. When a user
ostimulates a solution whosedete
tor would
over some desirable information, thesystem
ould ignore the
ostimulation signal be
ausethere should be no \impli
it" dete
tors in this region.No information from the \good" regions of informationspa
e will ever be
ensored by the dete
tors (Figure 2).3.4 The role of senes
en
eUsers may want to �lter out some types of informationfor only a short period of time. For example, if a radiostation plays a song too frequently or if a news storyre
eives too mu
h
overage, a listener may tire of it.These individuals may a
tually enjoy hearing the songor listening to new developments in the news story at alater date, so the dete
tors would be
ounterprodu
tiveafter their \natural" lifetimes.A
tive immune
ells have short lifetimes, and memory
ells
an be eliminated by
ompetition for spa
e [45℄.These features may be desirable in the algorithm fortwo reasons. The �rst is to provide \rolling
overage"of self. If the �tness fun
tion (e.g. the user's tastes)
hange over time, one
ould have the lifetime of thea
tive immune
ells be �nite to re
e
t the dynami
 na-ture of the user's judgment. The se
ond reason is spa
eeÆ
ien
y. It may not be feasible to store an unboundednumber of dete
tors. One
ould \age out" old dete
-

X

X

X

X

X

X
X

X X

X

X
X

X

X

X

X

X

X

X

X
X

X

Figure 2: Coverage in the model using negative sele
-tion. The dotted
ir
les represent the extent of de-te
tors that are eliminated by negative sele
tion. Thesolid
ir
les are regions
overed by a
tive dete
tors.Note that none of the useful information prote
ted bynegative sele
tion (the shaded regions)
an be
overedby dete
tors.tors to make room for new ones. Alternatively, theuser
ould manually
reate memory dete
tors to
overpatterns that he or she never wants to see again.3.5 The e�e
t of historyThe order in whi
h an IIS is exposed to information
an have impa
t on its e�e
tiveness. Su
h phenomenahave been observed in the natural immune system, par-ti
ularly in the
ase of in
uenza. Immunologists havedis
overed that the response to a strain of
u may bedominated by
ells that were
reated in response to anearlier exposure to a di�erent strain [10, 13℄. Thesememory
ells are probably most e�e
tive against thestrain that generated them, but they
an respond torelated ones. This phenomenon is known as originalantigeni
 sin, and many va

ines take advantage of thise�e
t. For example, if one is exposed to the relativelyharmless
owpox ba
teria, one is prote
ted against therelated but deadly smallpox [23℄. Unfortunately, priorexposure to antigens
an also work against us [46℄. Forexample, a
u va

ine works by eli
iting a mild re-sponse to a parti
ular strain's
u antigens so that anindividual will be able to mount an e�e
tive se
ondaryresponse when exposed to it in the future. However,the memory
ells
reated by a va

ine from a previousyear may atta
k and eliminate subsequent va

ines be-fore they
an establish prote
tive immunity. If the �rstva

ine does not provide prote
tion against the strains
orresponding to these later va

inations, this individ-ual would be vulnerable to them (Figure 3). If thisindividual had not re
eived this �rst va

ine, the sub-sequent va

ines
ould have been e�e
tive.One should be able to \va

inate" an IIS by exposing

B

C

A

Figure 3: The e�e
t of history. The dots labeled \A"and \B" and \C" represent solutions the user does notlike. The
ir
les are the extents of their negative dete
-tors, or \balls of stimulation". If solution A is reje
tedby the user �rst, the dete
tor that forms around itwould reje
t B before it
ould be presented. However,C
ould be presented be
ause it does not fall withinthe s
ope of the dete
tor for A. However, if B had beenpresented �rst, the story would be di�erent. Neither Anor C would be seen after B be
ause its dete
tor would
over all three solutions.it to undesirable information without ne
essarily ex-posing the user. This would allow an administrator topreemptively blo
k the passage of
ertain kinds of in-formation to a user. For example, a
orporation mightprohibit
ertain kinds of e-mail or web traÆ
, su
has pornography or personal e-mail. The
orporation
ould \va

inate" the IISs of its employees with exem-plars from the banned
ategories, and the employeeswould not be exposed to these kinds of information.Be
ause the order in whi
h an individual is exposedto undesirable information may a�e
t the
overage ofthe individual's IIS, the va

ination strategy should beplanned with
are.4 Appli
ationsThe most obvious use of an IIS of the sort des
ribedhere is information �ltering. An IIS
ould serve as apersonalized interfa
e agent that learns a user's pref-eren
es for sour
es of information or for a range of op-tions that is too large or dynami
 for a user to evalu-ate. Be
ause it only requires feedba
k when the useris exposed to something he or she does not want andit learns without using separated training and test-ing phases, an IIS
ould be a non-intrusive additionto many user interfa
es. It
ould
omplement a
tivestrategies, su
h as information retrieval, that sear
hfor potentially useful information.The IISs of individuals
an be
ombined to produ
e agroup IIS. One
an think of an IIS as a sieve that �l-

x

x

x
x

x
xx

x

x

x

x
x

x
x

x

Unsorted information

o

o

o

o

o

o

o

o

o

Information immune systems

Group−filtered information

Filtered by one user

v

v
v

v

v

v

v

v

v

o

v

x
v

Figure 4: An information immune system as a sieve.The IIS stands between a stream of information anda user, blo
king a signi�
ant portion of it. Only theinformation that
an pass through the \sieve" a
tuallyrea
hes the user. When the IISs of multiple users areapplied in serial, the information that passes all IISsare \
onsensus solutions".ters undesirable information. The data that
an passthrough the \sieves" of many people are those that arelikely to satisfy all of them (Figure 4). We
all thesedata
onsensus solutions. A group IIS would be usefulwhen the group is exposed to shared information. Forexample, if
o-lo
ated people want to listen to musi
together, one would want to play musi
 that none of theindividuals dislikes. It remains to be seen how well agroup IIS will work with a large group of users in a par-ti
ular domain. Consensus-�nding will be
ome moreimportant with the in
rease in the number of intelli-gent environments that automati
ally respond to theusers' needs. For example, smart home te
hnology
anadjust the musi
, artwork, temperature, and lightingto a

ommodate its o

upants. Most resear
h fo
useson
atering to a single individual [26, 17, 51, 20℄, butfor many environments it will be important to satisfythe preferen
es of multiple o

upants.An IIS
ould be used to assist designers and artists [7℄.If a random sour
e of design solutions or works of artwere fed to an IIS, only those that are not similar tothose reje
ted in the past would pass through. Thequality of the solutions from this �ltered stream shouldbe signi�
antly better than the un�ltered stream. This
ould be a useful strategy for design problems in whi
ha designer or artist is interested in exploring a largerange of possible solutions. The solutions
ould bere�ned or optimized using other te
hniques, su
h asevolutionary design [3℄.Collaborative design
ould be fa
ilitated by using theIISs of multiple individuals. The
ombination of IISs isthe superset of solutions that people dislike. Consen-

sus solutions are not optimal solutions, but a varietyof solutions that are \good enough" for everyone. In
ertain
ases, it would be preferable to
ombine the fa-vored solutions of ea
h of the group members insteadof using a group IIS. This
ould be done by taking theinterse
tion of the favored solutions of the members orby
ombining (hybridizing) them. The former strat-egy is problemati
 when the solution spa
e is too largefor a user to spe
ify the set of all a

eptable solutions(as was found with GroupCast[33℄) or if the knowledgeof a user's preferen
es is in
omplete. In these
ases,interse
tions will be diÆ
ult to �nd. The latter strat-egy of
ombining solutions
an be diÆ
ult. It is oftennot obvious how to
ombine the desirable traits of twosolutions to produ
e a third good solution. By
ombin-ing the dislikes of multiple users, the spa
e of potential
andidate solutions is likely to be larger and there isno need to
ombine solutions.5 An example: An aestheti
information immune systemWe have applied the prin
iples dis
ussed in this paperto design a simple IIS that generates
omputer art [7℄,and we summarize the results here. The IIS
hara
ter-ized several users' preferen
es for a parti
ular family of
omputer-generated images known as Biomorphs [11℄.Biomorphs are re
ursively drawn �gures that
an bede�ned by nine parameters. Ea
h user was shown aset of randomly generated Biomorphs and instru
tedto reje
t those that he or she did not like. For ea
huser, an IIS was
reated based on the parameters ofthe reje
ted Biomorphs. The IIS �ltered out any im-ages that had parameters similar to those reje
ted inthe past, and they formed a rough estimate of the partsof Biomorph parameter spa
e that ea
h user wanted toavoid.We tested whether a user
ould use an IIS to �lter astream of randomly generated Biomorphs to produ
ean edited stream of high quality Biomorphs, based onthe subje
tive judgments of the user. We also investi-gated group IISs that applied the IISs of several usersin serial. We wanted to determine if the addition ofother users' IISs would enhan
e or degrade the qual-ity of a single user's IIS. These e�e
ts were measuredby having the users evaluate three sets of randomlygenerated Biomorphs that were �ltered using no IIS,their own IIS, a group IIS
omposed of seven users'IISs. Most users preferred the Biomorph images �l-tered using their own IISs to the un�ltered ones, sug-gesting that the IISs had preferentially �ltered out im-ages that would have been reje
ted by the users. Thegroup IIS was less su

essful, possibly be
ause of di�er-en
es among the users' Biomorph aestheti
 preferen
esor possibly be
ause of the
oarseness of the dete
tors(we used quite
oarse-grained dete
tors in order to re-du
e the training time for ea
h user). We repeatedthe test with a subset of three users and a group IIS

omposed of only these three users' IISs. The imagesprodu
ed by this smaller group's IIS were per
eived tobe better than un�ltered, and ea
h user found theseimages to be no worse than those produ
ed using theirown IISs, indi
ating the possibility of a
onsensus so-lution.6 Con
lusionsWe believe that information immune systems
ouldplay an important role in this age of information over-load. To date, we as a so
iety have developed only
rude
oping me
hanisms to allow us to survive theenormous amounts of data to whi
h we are routinelyexposed [35℄. A su

essful IIS would redu
e the loadand make other strategies for �nding and pro
essinginformation more e�e
tive.Information immune systems, however, should be�elded with
aution. As �ltering strategies be
omemore sophisti
ated, the produ
ers of unwanted infor-mation will themselves adapt,
reating a kind of infor-mation arms ra
e. We see this already in the adapta-tion of magazine advertisements designed to resemble
ontent arti
les and \junk mail" pa
kaged in oÆ
ial-looking envelopes. Even more insidious te
hniques em-bed advertising in
ontent in whi
h people are inter-ested. Advertisements
an be wrapped around e-mailfor presentation before the user
an re
eive it [8℄,
or-porate logos and produ
ts
an be digitally edited into�lms and television programs [53℄, and some shows in-tegrate their sponsors' produ
ts into the plotlines [37℄.Even in the absen
e of adaptive adversaries, our infor-mation �ltering te
hnology will drive a sele
tive pro-
ess that will minimize the di�eren
es between desir-able and undesirable information. As our �lters gaineÆ
a
y, undesirable information will evolve to evadethem. The �lters must
onstantly
o-evolve or else theywill rapidly be
ome useless. When we begin deployingIISs, we must be prepared to live in a dynami
 infor-mation e
osystem in whi
h our defenses must adaptas qui
kly as the abilities of unwanted information topenetrate them [52℄.A
knowledgmentsWe thank Mar
 Millier of Intel Corporation for sug-gesting the term \information immune system." Theauthors gratefully a
knowledge the support of the Na-tional S
ien
e Foundation (ANIR-9986555), the OÆ
eof Naval Resear
h (N00014-99-1-0417), Defense Ad-van
ed Proje
ts Agen
y (AGR F30602-00-2-0584), theIntel Corporation, and the Santa Fe Institute.Referen
es[1℄ D. Aha, D. W. Kibler, and M. K. Albert. Instan
e-based learning algorithms. Ma
hine Learning,6:37{66, 1991.

[2℄ N. J. Belkin andW. B. Croft. Information �lteringand information retrieval: Two sides of the same
oin? Communi
ations of the ACM, 35(12):29{38,1992.[3℄ P. J. Bentley, editor. Evolutionary Design by Com-puters. Morgan Kaufmann Publishers, San Fran-
is
o, California, 1999.[4℄ H. Bersini and F. J. Varela. Hints for adaptiveproblem solving gleaned from immune networks.In H. S
hwefel and R. M�anner, editors, Paral-lel Problem Solving from Nature, pages 343{354,Berlin, 1991. Springer-Verlag.[5℄ J. A. Borghans, A. J. Noest, and R. J. De Boer.How spe
i�
 should immunologi
al memory be? JImmunol, 163(2):569{75, 1999.[6℄ Brightmail Solution Suite. Brightmail,In
., San Fran
is
o, California, 2002.http://www.brightmail.
om.[7℄ D. L. Chao and S. Forrest. Generating biomorphswith an aestheti
 immune system. In Arti�
ialLife VIII: Pro
eedings of the Eighth InternationalConferen
e on the Simulation and Synthesis ofLiving Systems, 2002. (in press).[8℄ N. Co
hrane. Mobile entrepreneur rapt in wirelesse-mail advertising. The Age (Melbourne), 24 Jul2001:7.[9℄ Cyberpatrol. SurfControl pl
, Westborough, Mas-sa
husetts, 2002.[10℄ F. M. Davenport, A. V. Hennessy, and T. Fran
is.Epidemiologi
 and immunologi
 signi�
an
e of agedistribution to antibody to antigeni
 variants ofin
uenza virus. J Exp Med, 98:641{656, 1953.[11℄ R. Dawkins. The Blind Wat
hmaker. LongmanS
ienti�
 and Te
hni
al, Harlow, UK, 1986.[12℄ L. N. De Castro and F. J. Von Zuben. aiNet: Anarti�
ial immune network for data analysis. InH. A. Abbass, R. A. Sarker, and C. S. Newton, ed-itors, Data Mining: A heuristi
 approa
h,
hapterXII, pages 231{259. Idea Group Publishing, USA,Hershey, Pennsylvania, 2001.[13℄ S. Fazekas de St. Groth and R. G. Webster. Dis-quisitions of original antigeni
 sin. I. Eviden
e inman. J Exp Med, 124(3):331{45, 1966.[14℄ G. Fis
her and C. Stevens. Information a

ess in
omplex, poorly stru
tured information spa
es. InPro
eedings of the SIGCHI Conferen
e on HumanFa
tors in Computing Systems (CHI 1991), pages63{70, 1991.[15℄ S. Forrest, A. S. Perelson, L. Allen, andR. Cherukuri. Self-nonself dis
rimination in a
omputer. In Pro
eedings of the 1994 IEEE

Symposium on Resear
h in Se
urity and Priva
y.IEEE Computer So
iety Press, 1994.[16℄ D. Goldberg, D. Ni
hols, B. M. Oki, and D. Terry.Using
ollaborative �ltering to weave an infor-mation tapestry. Communi
ations of the ACM,35(12):61{70, 1992.[17℄ S. R. Hedberg. After desktop
omputing: Aprogress report on smart environments resear
h.IEEE Intelligent Systems, 15(5):7{9, 2000.[18℄ S. A. Hofmeyr. An immunologi
al model of dis-tributed dete
tion and its appli
ation to
omputerse
urity. PhD thesis, University of New Mexi
o,Albuquerque, New Mexi
o, 1999.[19℄ S. A. Hofmeyr and S. Forrest. Ar
hite
ture for anarti�
ial immune system. Evolutionary Computa-tion, 7(1):1289{1296, 1999.[20℄ House n Living Laboratory. S
hool of Ar
hite
tureand Planning, Massa
husetts Institute of Te
hnol-ogy, Cambridge, Massa
husetts, 2001.[21℄ J. E. Hunt and D. E. Cooke. Learning using anarti�
ial immune system. Journal of Network andComputer Appli
ations, 19:189{212, 1996.[22℄ C. A. Janeway Jr. The immune system evolved todis
riminate infe
tious nonself from noninfe
tiousself. Immunol Today, 13(1):11{6, 1992.[23℄ E. Jenner. An Inquiry into the Causes and E�e
tsof the Variolae Va

inae; a Disease Dis
overed insome of the Western Counties of England, Parti
-ularly Glou
estershire, and Known by the Name ofthe Cow Pox. 1798.[24℄ N. K. Jerne. Towards a network theory of theimmune system. Ann Immunol (Inst Pasteur),125C:373{389, 1974.[25℄ P. Kanerva. Sparse Distributed Memory. MITPress, 1988.[26℄ C. D. Kidd, R. J. Orr, G. D. Abowd, C. G. Atke-son, I. A. Essa, B. Ma
Intyre, E. Mynatt, T. E.Starner, and W. Newstetter. The aware home:A living laboratory for ubiquitous
omputing re-sear
h. In Pro
eedings of the Se
ond InternationalWorkshop on Cooperative Buildings (CoBuild'99),pages 191{198, 1999.[27℄ J. Kim and P. J. Bentley. The arti�
ial immunemodel for network intrusion dete
tion. In Pro
eed-ings of the 7th European Conferen
e on Intelli-gent Te
hniques and Soft Computing (EUFIT'99),1999.[28℄ P. Lyman and H. R. Varian. Howmu
h information?, 2000. Retrieved fromhttp://www.sims.berkeley.edu/how-mu
h-info.

[29℄ C. R. Ma
kay, W. L. Marston, L. Dudler, O. Sper-tini, T. F. Tedder, and W. R. Hein. Tissue-spe
i�
 migration pathways by phenotypi
ally dis-tin
t subpopulations of memory T
ells. Eur JImmunol, 22(4):887{95, 1992.[30℄ T. W. Malone, K. R. Grant, and F. A. Turbak.The Information Lens: An intelligent system forinformation sharing in organizations. In Pro
eed-ings of the SIGCHI Conferen
e on Human Fa
-tors in Computing Systems (CHI 1986), pages 1{8, 1986.[31℄ T. W. Malone, K. R. Grant, F. A. Turbak, S. A.Brobst, and M. D. Cohen. Intelligent informationsharing systems. Communi
ations of the ACM,30(5):390{402, 1987.[32℄ J. F. M
Carthy and T. D. Anagnost. Musi
FX:An arbiter of group preferen
es for
omputer sup-ported
ollaborative workouts. In Pro
eedingsof the ACM 1998 Conferen
e on Computer Sup-ported Cooperative Work, pages 363{372. ACMPress, 1998.[33℄ J. F. M
Carthy, T. J. Costa, and E. S. Liongosari.UniCast, OutCast & GroupCast: An explorationof new intera
tion paradigms for ubiquitous, pe-ripheral displays. In Workshop on Distributedand Disappearing User Interfa
es in UbiquitousComputing at the SIGCHI Conferen
e on HumanFa
tors in Computer Systems (CHI 2001). ACMPress, 2001.[34℄ M. Metral. A Generi
 Learning Interfa
e Agent.B.S
. Thesis, Department of Ele
tri
al Engineer-ing and Computer S
ien
e, Massa
husetts Insti-tute of Te
hnology, Cambridge, Massa
husetts,1992.[35℄ J. G. Miller. Information input overload and psy-
hopathology. Ameri
an Journal of Psy
hiatry,116(8):695{704, 1960.[36℄ M. O'Connor, D. Cosley, J. A. Konstan, andJ. Riedl. PolyLens: A re
ommender system forgroups of users. In Pro
eedings of the 7th Euro-pean Conferen
e on Computer Supported Coopera-tive Work (ECSCW 2001), pages 199{218. KluwerA
ademi
, 2001.[37℄ G. Pennington. Just try zapping these ads. St.Louis Post-Dispat
h, 14 Apr 2002:F1.[38℄ A. S. Perelson and G. F. Oster. Theoreti
al studiesof
lonal sele
tion: minimal antibody repertoiresize and reliability of self-non-self dis
rimination.J Theor Biol, 81(4):645{70, 1979.[39℄ N. Postman. Informing ourselves to death, 11 O
t90. Spee
h delivered to the German Informati
sSo
iety (Gesells
haft f�ur Informatik).

[40℄ N. Postman. Te
hnopoly. The Surrender of Cul-ture to Te
hnology. Vintage Books, New York,1992.[41℄ Realtime Bla
khole List. Mail Abuse Preven-tion System LLC, Redwood City, California, 2002.http://www.mail-abuse.org/rbl/.[42℄ P. Resni
k, N. Ia
ovou, M. Su
hak, P. Bergstrom,and J. Riedl. GroupLens: An open ar
hite
turefor
ollaborative �ltering of Netnews. In Pro
eed-ings of ACM 1994 Conferen
e on Computer Sup-ported Cooperative Work, pages 175{186. ACMPress, 1994.[43℄ F. Sallusto, D. Lenig, R. Forster, M. Lipp, andA. Lanzave

hia. Two subsets of memory T lym-pho
ytes with distin
t homing potentials and ef-fe
tor fun
tions. Nature, 401(6754):708{12, 1999.[44℄ R. C. S
hank. Dynami
 Memory: A theory ofreminding and learning in
omputers and people.Cambridge University Press, New York, 1982.[45℄ L. K. Selin, K. Vergilis, R. M. Welsh, and S. R.Nahill. Redu
tion of otherwise remarkably sta-ble virus-spe
i�

ytotoxi
 T lympho
yte mem-ory by heterologous viral infe
tions. J Exp Med,183(6):2489{99, 1996.[46℄ D. J. Smith, S. Forrest, D. H. A
kley, and A. S.Perelson. Variable eÆ
a
y of repeated annual in-
uenza va

ination. Pro
 Natl A
ad S
i U S A,96(24):14001{6, 1999.[47℄ D. J. Smith, S. Forrest, and A. S. Perelson. Im-munologi
al memory is asso
iative. In WorkshopNotes, Workshop 4: Immunity Based Systems,Intnl. Conf. on Multiagent Systems, pages 62{70,1998.[48℄ P. D. Stahl and R. A. Ezekowitz. The mannosere
eptor is a pattern re
ognition re
eptor involvedin host defense. Curr Opin Immunol, 10(1):50{5,1998.[49℄ C. Stan�ll and D. Waltz. Toward memory-based reasoning. Communi
ations of the ACM,29(12):1213{1228, 1986.[50℄ J. Timmis. Arti�
ial immune systems: A noveldata analysis te
hnique inspired by the immunenetwork theory. PhD thesis, University of Wales,2000.[51℄ The user in
ontrol. Philips Resear
h Password,3:10{13, 2000.[52℄ L. Van Valen. A new evolutionary law. Evolution-ary Theory, 1:1{30, 1973.[53℄ Virtual ads, real problems. Advertising Age,70(22):30, 1999.

[54℄ P. D. Williams, K. P. An
hor, J. L. Bebo, G. H.Guns
h, and G. D. Lamont. CDIS: Towardsa
omputer immune system for dete
ting net-work intrusions. In W. Lee, L. Me, and A. We-spi, editors, 4th International Symposium, Re
entAdvan
es in Intrusion Dete
tion, pages 117{133,Berlin, 2001. Springer-Verlag.

The Danger Theory and Its Application to Artificial Immune
Systems

Uwe Aickelin
Department of Computing

University of Bradford

Bradford

BD7 1DP

u.aickelin@bradford.ac.uk

Steve Cayzer
Hewlett-Packard Laboratories

Filton Road

Bristol

BS12 6QZ

Steve_Cayzer@hp.com

Abstract

Over the last decade, a new idea challenging the
classical self-non-self viewpoint has become
popular amongst immunologists. It is called the
Danger Theory. In this conceptual paper, we
look at this theory from the perspective of
Artificial Immune System practitioners. An
overview of the Danger Theory is presented with
particular emphasis on analogies in the Artificial
Immune Systems world. A number of potential
application areas are then used to provide a
framing for a critical assessment of the concept,
and its relevance for Artificial Immune Systems.

1 INTRODUCTION
Over the last decade, a new theory has become popular
amongst immunologists. It is called the Danger Theory,
and its chief advocate is Matzinger [18], [19] and [20]. A
number of advantages are claimed for this theory; not
least that it provides a method of ‘grounding’ the immune
response. The theory is not complete, and there are some
doubts about how much it actually changes behaviour and
/ or structure. Nevertheless, the theory contains enough
potentially interesting ideas to make it worth assessing its
relevance to Artificial Immune Systems.

It should be noted that we do not intend to defend this
theory, which is still controversial [21]. Rather we are
interested in its merits for Artificial Immune System
applications and hence its actual existence in the humoral
immune system is of little importance to us. Our question
is: Can it help us build better Artificial Immune Systems?

Few other Artificial Immune System practitioners are
aware of the Danger Theory, notable exceptions being
Burgess [5] and Willamson [22]. Hence, this is the first
paper that deals directly with the Danger Theory, and it is
the authors’ intention that this paper stimulates discussion
in our research community.

In the next section, we provide an overview of the Danger
Theory, pointing out, where appropriate, some analogies
in current Artificial Immune System models. We then
assess the relevance of the theory for Artificial Immune
System security applications, which is probably the most
obvious application area for the danger model. Other
Artificial Immune System application areas are also
considered. Finally, we draw some preliminary
conclusions about the potential of the Danger concept.

2 THE DANGER THEORY
The immune system is commonly thought to work at
three levels: External barriers (skin, mucus), innate
immunity and the acquired or adaptive immune system.
As part of the third and most complex level, B-
Lymphocytes secrete specific antibodies that recognise
and react to stimuli. It is this pattern matching between
antibodies and antigens that lies at the heart of most
Artificial Immune System implementations. Another type
of cell, the T (killer) lymphocyte, is also important in
different types of immune reactions. Although not usually
present in Artificial Immune System models, the
behaviour of this cell is implicated in the Danger model
and so it is included here. From the Artificial Immune
System practitioner’s point of view, the T killer cells
match stimuli in much the same way as antibodies do.

However, it is not simply a question of matching in the
humoral immune system. It is fundamental that only the
‘correct’ cells are matched as otherwise this could lead to
a self-destructive autoimmune reaction. Classical
immunology [12] stipulates that an immune response is
triggered when the body encounters something non-self or
foreign. It is not yet fully understood how this self-non-
self discrimination is achieved, but many immunologists
believe that the difference between them is learnt early in
life. In particular it is thought that the maturation process
plays an important role to achieve self-tolerance by
eliminating those T and B cells that react to self. In
addition, a ‘confirmation’ signal is required; that is, for
either B cell or T (killer) cell activation, a T (helper)
lymphocyte must also be activated. This dual activation is

further protection against the chance of accidentally
reacting to self.

Matzinger’s Danger Theory debates this point of view
(for a good introduction, see Matzinger [18]). Technical
overviews can be found in Matzinger [19] and Matzinger
[20]. She points out that there must be discrimination
happening that goes beyond the self-non-self distinction
described above. For instance:

• There is no immune reaction to foreign bacteria in the
gut or to the food we eat although both are foreign
entities.

• Conversely, some auto-reactive processes are useful,
for example against self molecules expressed by
stressed cells.

• The definition of self is problematic – realistically,
self is confined to the subset actually seen by the
lymphocytes during maturation.

• The human body changes over its lifetime and thus
self changes as well. Therefore, the question arises
whether defences against non-self learned early in
life might be autoreactive later.

• Other aspects that seem to be at odds with the
traditional viewpoint are autoimmune diseases and
certain types of tumours that are fought by the
immune system (both attacks against self) and
successful transplants (no attack against non-self).

Matzinger concludes that the immune system actually
discriminates “some self from some non-self”. She asserts
that the Danger Theory introduces not just new labels, but
a way of escaping the semantic difficulties with self and

non-self, and thus provides grounding for the immune
response. If we accept the Danger Theory as valid we can
take care of ‘non-self but harmless’ and of ‘self but
harmful’ invaders into our system. To see how this is
possible, we will have to examine the theory in more
detail.

The central idea in the Danger Theory is that the immune
system does not respond to non-self but to danger. Thus,
just like the self-non-self theories, it fundamentally
supports the need for discrimination. However, it differs
in the answer to what should be responded to. Instead of
responding to foreignness, the immune system reacts to
danger.

This theory is borne out of the observation that there is no
need to attack everything that is foreign, something that
seems to be supported by the counter examples above. In
this theory, danger is measured by damage to cells
indicated by distress signals that are sent out when cells
die an unnatural death (cell stress or lytic cell death, as
opposed to programmed cell death, or apoptosis).

Figure 1 depicts how we might picture an immune
response according to the Danger Theory. A cell that is in
distress sends out an alarm signal, whereupon antigens in
the neighbourhood are captured by antigen-presenting
cells such as macrophages, which then travel to the local
lymph node and present the antigens to lymphocytes.
Essentially, the danger signal establishes a danger zone
around itself. Thus B cells producing antibodies that
match antigens within the danger zone get stimulated and
undergo the clonal expansion process. Those that do not
match or are too far away do not get stimulated.

Antigens

Antibodies

Match, but
too far
away

Stimulation

Danger
Zone

Danger Signal

Damaged Cell

Cells

No match

Figure 1: Danger Theory Model.

Matzinger admits that the exact nature of the danger
signal is unclear. It may be a ‘positive’ signal (for
example heat shock protein release) or a ‘negative’ signal
(for example lack of synaptic contact with a dendritic
antigen-presenting cell). This is where the Danger Theory
shares some of the problems associated with traditional
self-non-self discrimination (i.e. how to discriminate
danger from non-danger). However, in this case, the
signal is grounded rather than being some abstract
representation of danger.

Another way of looking at the danger model is to see it as
an extension of the Two-Signal model by Bretscher and
Cohn [4]. In this model, the two signals are antigen
recognition (signal one) and co-stimulation (signal two).
Co-stimulation is a signal that means “this antigen really
is foreign” or, in the Danger Theory, “this antigen really
is dangerous”. How the signal arises will be explained
later. The Danger Theory then operates by applying three
laws to lymphocyte behaviour (the laws of lymphotics
[20]):

• Law 1. Become activated if you receive signals one
and two together. Die if you receive signal one in the
absence of signal two. Ignore signal two without
signal one.

• Law 2. Accept signal two from antigen-presenting
cells only (or, for B cells, from T helper cells). B
cells can act as antigen-presenting cells only for
experienced (memory) T cells. Note that signal one
can come from any cells, not just antigen-presenting
cells.

• Law 3. After activation (activated cells do not need
signal two) revert to resting state after a short time.

For the mature lymphocyte, (whether virgin or
experienced) these rules are adhered to. However, there
are two exceptions in the lymphocyte lifecycle. Firstly,
immature cells are unable to accept signal two from any
source. This enables an initial negative selection
screening to occur. Secondly, activated (effector) cells
respond only to signal one (ignoring signal two), but
revert to the resting state shortly afterwards.

An implication of this theory is that autoreactive effects
are not necessarily harmful, and are in fact expected
during an infection. This is because any lymphocyte
reacting to an antigen in the ‘danger zone’ will be
activated. These antigens are not necessarily the culprits
for the danger signal. If they are, then the reacting
lymphocytes will continue to be restimulated until the
antigens (and therefore the danger signal) are removed.
After this, they will rest, receiving neither signal one nor
signal two.

On the other hand, lymphocytes reacting to innocuous
(self) antigens will continue to receive signal one from
these antigens, even after the danger (and therefore signal
two) has vanished. Therefore these lymphocytes will be
deleted, and tolerance will be achieved. However, further
autoreactive effects can be expected, partly because ‘self’
changes over time, and partly because of new lymphocyte

generation (particularly B cells, which produce
hypermutated clones during activation).

A problem is posed by the antigen-presenting cell itself,
whose (innocuous) antigens are by definition always in
the danger zone. Lymphocytes reacting to these antigens
might destroy the antigen-presenting cell and thus
interfere with the immune response. The negative
selection of immature lymphocytes protects against this
possibility.

Figure 2 shows a more detailed picture of how the Danger
Theory can be viewed as an extension of immune signals.
These diagrams are adapted from those presented in
Matzinger [19] except for the sixth, which incorporates
suggestions made in Matzinger [20].

In the original view of the world by Burnet [6], only
signal one is considered. This is shown in the first
diagram, where the only signal shown is that between
infectious agents and lymphocytes (B cells, marked B,
and T killer, marked Tk). Signal two (second diagram)
was introduced by Bretscher and Cohn [4]. This helper
signal comes from a T helper cell (marked Th), on receipt
of signal one from the B cell. That is, the B cell presents
antigens to the T helper cell and awaits the T cell’s
confirmation signal. If the T cell recognises the antigen
(which, if negative selection has worked, should mean the
antigen is non-self) then the immune response can
commence. It was Lafferty and Cuningham [17] who
proposed that the T helper cells themselves also need to
be ‘switched on’ by signals one and two, both from
antigen-presenting cells. This process is depicted in the
third diagram.

Note that the T helper cell gets signal one from two
sources – the B cell and the antigen-presenting cell. In the
former case the antigens are not chosen randomly – the
very opposite, since B cells are highly selective for a
range of (hopefully non-self) antigens. In the latter case,
the antigens are chosen randomly (the antigen-presenting
cell simply presents any antigen it picks up) but signal
two should only be provided to the T helper cell for non-
self antigens. It is not necessarily clear how the antigen-
presenting cell ‘knows’ the antigen is non-self. Janeway
[14] introduced the idea of infectious non-self (for
example bacteria), which ‘primes’ antigen presenting
cells, i.e. causing signal two to be produced (fourth
diagram). This priming signal is labelled as signal 0 in the
figures.

Matzinger proposes to allow priming of antigen-
presenting cells by a danger signal (fifth diagram). She
also proposes to extend the efficacy of T helper cells by
routing signal two through antigen presenting cells [20].
We have marked this as ‘signal 3’ in the sixth diagram
(although Matzinger does not use that term, the intention
is clear). In Matzinger’s words “the antigen seen by the
killer need not be the same as the helper; the only
requirement is that they must both be presented by the
same antigen-presenting cell”. This arrangement allows T
helper cells to prime many more T killer cells than they
would otherwise have been able to.

Tk
B

Bacterium
Virus Infected Cell

Tk
B

Bacterium
Virus Infected Cell

1. Antigen in Control (Burnet)

Signal 1Signal 1

2. Helper in Control (Bretscher & Cohn)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Tk
B

Bacterium
Virus Infected Cell

Signal 1

Signal 2

Signal 1Signal 1

Signal 2Signal 2

3. APC in control (Lafferty & Cunningham)

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Tk
B

Bacterium
Virus Infected Cell

Signal 1

Signal 2

Signal 1Signal 1

Signal 2Signal 2

4. Infectious non self in control (Janeway)

Bacteria

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Bacteria

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Tk
B

Bacterium
Virus Infected Cell

Signal 1
Signal 0

Signal 2

Signal 1Signal 1
Signal 0Signal 0

Signal 2Signal 2

5. Danger in Control (Matzinger)

Distress Bacteria

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Distress Bacteria

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Bacteria

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Tk
B

Bacterium
Virus Infected Cell

Signal 1
Signal 0

Signal 2

Signal 1Signal 1
Signal 0Signal 0

Signal 2Signal 2

Virus?

APC

6. Multiplication of effect (Matzinger)

Distress Bacteria

APC

(random)

(non-random)

Th

Tk
B

Bacterium
Virus Infected Cell

Signal 1
Signal 0

Signal 2

Signal 3

Signal 1Signal 1
Signal 0Signal 0

Signal 2Signal 2

Signal 3Signal 3

Figure 2: Danger Theory viewed as immune signals.

The Danger Theory is not without its limitations. As
mentioned, the exact nature of the danger signal is still
unclear. Also, there is sometimes danger that should not
be responded to (cuts, transplants). In fact, in the case of
transplants it is often necessary to remove the antigen-
presenting cells from the transplanted organ. Finally, the
fact that autoimmune diseases do still, if rarely, happen,
has yet to be fully reconciled with the Danger Theory.

3 THE DANGER THEORY AND SOME
ANALOGIES TO ARTIFICIAL
IMMUNE SYSTEMS

Danger theory clearly has many facets and intricacies, and
we have touched on only a few. It might be instructive to
list a number of considerations for an Artificial Immune
System practitioner regarding the suitability of the danger
model for their application. The basic consideration is

whether negative selection is important. If so, then these
points may be relevant:

• Negative selection is bound to be imperfect, and
therefore autoreactions (false positives) are
inevitable.

• The self/non-self boundary is blurred since self and
non-self antigens often share common regions.

• Self changes over time. Therefore, one can expect
problems with memory cells, which later turn out to
be inaccurate or even autoreactive.

If these points are sufficient to make a practitioner
consider incorporating the Danger theory into their model,
then the following considerations may be instructive:

1. A danger model requires an antigen-presenting cell,
which can present an appropriate danger signal.

2. ‘Danger’ is an emotive term. The signal may have
nothing to do with danger (see, for example, our
discussion on data mining applications in section 5).

3. The appropriate danger signal can be positive
(presence of signal) or negative (absence).

4. The danger zone in biology is spatial. In Artificial
Immune System applications, some other measure of
proximity (for instance temporal) may be used.

5. If there is an analogue of an immune response, it
should not lead to further danger signals. In biology,
killer cells cause a normal cell death, not danger.

6. Matzinger proposes priming killer cells via antigen-
presenting cells for greater effect. Depending on the
immune system used (it only makes sense for
spatially distributed models) this proposal may be
relevant.

7. There are a variety of considerations that are less
directly related to the danger model. For example,
migration – how many antibodies receive signal
one/two from a given antigen-presenting cell? In
addition, the danger theory relies on concentrations,
i.e. continuous not binary matching.

There are also a couple of points that might tempt a
practitioner to alter the danger model as presented here.
For example, the danger model has quite a number of
elements. Given that the antigen-presenting cell mediates
the danger signal, we might be able to simplify the model
– for example, do we still need a T helper cell? In
addition, there are some danger signals that might in some
sense be ‘appropriate’ and thus should not trigger an
immune response. In such cases, a method for avoiding
the danger pathway must be found. A biological example
is transplanted organs, in which antigen-presenting cells
are removed.

4 THE DANGER THEORY AND
ANOMALY DETECTION

An intriguing area for the application of Artificial
Immune Systems is the detection of anomalies such as
computer viruses, fraudulent transactions or hardware
faults. The underlying metaphor seems to fit particularly
nicely here, as there is a system (self) that has to be
protected against intruders (non-self). Thus if natural
immune systems have enabled biological species to
survive, can we not create Artificial Immune Systems to
do the same to our computers, machines etc? Presumably
those systems would then have the same beneficial
properties as natural immune systems like error tolerance,
distribution, adaptation and self-monitoring. A recent
overview of biologically inspired approaches to this area
can be found in Williamson [22].

In this section we will present indicative examples of such
artificial systems, explain their current shortcomings and
show how the Danger Theory might help overcome some
of these.

One of the first such approaches is presented by Forrest et
al [11] and extended by Hofmeyr and Forrest [13]. This
work is concerned with building an Artificial Immune
System that is able to detect non-self in the area of
network security where non-self is defined as an
undesired connection. All connections are modelled as
binary strings and there is a set of known good and bad
connections, which is used to train and evaluate the
algorithm. To build the Artificial Immune System,
random binary strings are created called detectors.

These detectors then undergo a maturation phase where
they are presented with good, i.e. self, connections. If they
match any of these they are eliminated otherwise they
become mature, but not activated. If during their further
lifetime these mature detectors match anything else,
exceeding a certain threshold value, they become
activated. This is then reported to a human operator who
decides whether there is a true anomaly. If so the
detectors are promoted to memory detectors with an
indefinite life span and minimum activation threshold.
Thus, this is similar to the secondary response in the
natural immune system, for instance after immunisation.

An approach such as the above is known in Artificial
Immune Systems as negative selection as only those
detectors (antibodies) that do not match live on. It is
thought that T cells mature in similar fashion in the
thymus such that only those survive and mature that do
not match any self cells after a certain amount of time.

An alternative approach to negative selection is that of
positive selection as used for instance by Forrest et al [9]
and by Somayaji and Forrest [22]. These systems are a
reversal of the negative selection algorithm described
above with the difference that detectors for self are
evolved. From a performance point of view there are
advantages and disadvantages for both methods. A
suspect non-self string would have to be compared with
all self-detectors to establish that it is non-self, whilst with

negative selection the first matching detector would stop
the comparison. On the other hand, for a self-string this is
reversed giving positive selection the upper hand. Thus,
performance depends on the self to non-self ratio, which
should generally favour positive selection.

However, there is another difference between the two
approaches: the nature of false alarms. With negative
selection inadequate detectors will result in false
negatives (missed intrusions) whilst with positive
selection there will be false positives (false alarms). The
preference between the two in this case is likely to be
problem specific.

Both approaches have been extended further [10]
including better co-stimulation methods and activation
thresholds to reduce the number of false alarms, multiple
antibody sub-populations for improved diversity and
coverage and improved partial matching rules. Recently,
similar approaches have also been used to detect hardware
faults (Bradley and Tyrrell [1]), network intrusion (Kim
and Bentley [16]) and fault tolerance (Burgess [5]).

What are the remaining challenges for a successful use of
Artificial Immune Systems for anomaly detection?
Firstly, self and non-self will usually evolve and change
during the lifetime of the system. Hence, to be effective,
any system used must be robust and flexible enough to
cope with changing circumstances. Based on the
performance of their natural counterparts, Artificial
Immune Systems should be well suited to provide these
qualities. Secondly, appropriate representations of self
and good matching rules have to be developed. Most
research so far has been concentrated in these two areas
and good advances have been made so far [8].

However, as pointed out by Kim and Bentley [15], scaling
is a problem with negative selection. As the systems to be
protected grow larger and larger so does self and non-self
and it becomes more and more problematic to find a set of
detectors that provides adequate coverage whilst being
computationally efficient. It is inefficient, if not
impossible, to map the entire non-self universe,
particularly as it will be changing over time. The same
applies to positive selection and trying to map all of self.

Moreover, the approaches so far have another
disadvantage: A response requires infection beyond a
certain threshold and human intervention confirming this.
Although one might argue that the operator sees fewer
alarms than in an unaided system, this clearly is not yet
the ideal situation of an autonomous system preventing all
damage. Apart from the resource implication of a human
component, an unduly long delay might be caused by this
necessity prolonging the time the system is exposed. This
situation might be further aggravated by the fact that the
labels self and non-self are often ambiguous and expert
knowledge might be required to apply them correctly.

How can these problems be overcome? We believe that
applying ideas from the Danger Theory can help building
better Artificial Immune Systems by providing a different
way of grounding and removing the necessity to map self

or non-self. To achieve this self-non-self discrimination
will still be useful but it is no longer essential. This is
because non-self no longer causes an immune response.
Instead, it will be danger signals that trigger a reaction.

What could such danger signals be? They should show up
after limited infection to minimise damage and hence
have to be quickly and automatically measurable. Suitable
signals could include:

• Too low or too high memory usage.

• Inappropriate disk activity.

• Unexpected frequency of file changes as measured
for example by checksums or file size.

• SIGABRT signal from abnormally terminated UNIX
processes.

• Presence of non-self.

Of course, it would also be possible to use ‘positive’
signals, as discussed in the previous section, such as the
absence of some normal ‘health’ signals.

Once the danger signal has been transmitted, the immune
system can then react to those antigens, for example,
executables or connections, which are ‘near’ the emitter
of the danger signal. Note that ‘near’ does not necessarily
mean geographical or physical closeness, something that
might make sense for connections and their IP addresses
but probably not for computer executables in general. In
essence, the physical ‘near’ that the Danger Theory
requires for the immune system is a proxy measure for
causality. Hence, we can substitute it with more
appropriate causality measures such as similar execution
start times, concurrent runtimes or access of the same
resources.

Consequently, those antibodies or detectors that match
(first signal) those antigens within a radius, defined by a
measure such as the above (second signal), will
proliferate. Having thereby identified the dangerous
components, further confirmation could then be sought by
sending it to a special part of the system simulating
another attack. This would have the further advantage of
not having to send all detectors to confirm danger. In
conclusion, using these ideas from the Danger Theory has
provided a better grounding of danger labels in
comparison to self / non-self, whilst at the same time
relying less on human competence.

5 THE DANGER THEORY AND OTHER
ARTIFICIAL IMMUNE SYSTEM
APPLICATIONS

It is not immediately obvious how the Danger Theory
could be of use to data mining problems such as the
movie prediction problem described in Cayzer and
Aickelin [7], because the notions of self and non-self are
not used. In essence, in data mining all of the system is
self. More precisely, it is not an issue what is self or non-

self as the designer of the database has complete control
over this aspect.

However, if the labels self and non-self were to be
replaced by interesting and non-interesting data for
example, a distinction would prove beneficial. In this
case, the immune system is being applied as a classifier. If
one can then further assume that interesting data is
located ‘close’ or ‘near’ to other interesting data, ideas
from the Danger Theory can come into play again. To do
so, it is necessary to define ‘close’ / ‘near’. We could use:

• Physical closeness, for instance distance in the
database as measured by an appropriate metric.

• Correlation of data, as measured by statistical tools.

• Similar entry times into the database.

• File size.

A danger signal could thus be interpreted as a valuable
piece of information that has been uncovered. Hence,
those antibodies are stimulated that match data that is
‘close’ this valuable piece of information.

Taking this idea further, we might define the danger
signal as an indication of user interest. Given this
definition, we can speculate about various scenarios in
which the danger signal could be of use. One such
scenario is outlined below for illustrative purposes.

Imagine a user browsing a set of documents. Each
document has a set of features (for instance keywords,
title, author, date etc). Imagine further that there is an
immune system implemented as a ‘watcher’, whose
antibodies match document features. ‘Interesting’
documents are those, whose features are matched by the
immune system.

When a user either explicitly or implicitly indicates
interest in the current document, a “danger” signal is
raised. This causes signal two to be passed, along with
signal one, to antibodies matching any antigen, i.e.
document feature, in the danger zone, i.e. this document.

Stimulated antibodies become effectors, and thus the
immune system learns to become a good filter when
searching for other interesting documents. Interesting
documents could be brought to the user’s attention (the
exact mechanism is not relevant here). The important
thing is that the user’s idea of an ‘interesting’ document
may change over time and so it is important that the
immune system adapts in a timely way to such a changing
definition of (non-) self.

Meanwhile, every document browsed by the user
(whether interesting or not) will be presented to the
antibodies as ‘signal one’. Uninteresting document
features will therefore give rise to signal one without
signal two, which will tolerate the autoreactive antibodies.
The net effect is to produce a set of antibodies that match
only interesting document features.

As mentioned, this example is purely illustrative but it
does show that ideas from the Danger theory may have
implications for Artificial Immune System applications in

domains where the relevance of ‘danger’ is far from
obvious.

6 CONCLUSIONS
To conclude, the Danger Theory is not about the way
Artificial Immune Systems represent data. Instead, it
provides ideas about which data the Artificial Immune
Systems should represent and deal with. They should
focus on dangerous, i.e. interesting data.

It could be argued that the shift from non-self to danger is
merely a symbolic label change that achieves nothing. We
do not believe this to be the case, since danger is a
grounded signal, and non-self is (typically) a set of feature
vectors with no further information about their meaning.
The danger signal helps us to identify which subset of
feature vectors is of interest. A suitably defined danger
signal thus overcomes many of the limitations of self-non-
self selection. It restricts the domain of non-self to a
manageable size, removes the need to screen against all
self, and deals adaptively with scenarios where self (or
non-self) changes over time.

The challenge is clearly to define a suitable danger signal,
a choice that might prove as critical as the choice of
fitness function for an evolutionary algorithm. In addition,
the physical distance in the biological system should be
translated into a suitable proxy measure for similarity or
causality in an Artificial Immune System. We have made
some suggestions in this paper about how to tackle these
challenges in a variety of domains, but the process is not
likely to be trivial. Nevertheless, if these challenges are
met, then future Artificial Immune System applications
might derive considerable benefit, and new insights, from
the Danger Theory.

Acknowledgements
We would like to thank the two anonymous reviewers,
whose comments greatly improved this paper.

References
[1] Bradley D, Tyrell A, The Architecture for a

Hardware Immune System, Proceedings of the 2002
Congress on Evolutionary Computation, 2002.

[2] Forrest H. Bennett III, John R. Koza, Jessen Yu,
William Mydlowec, Automatic Synthesis,
Placement, and Routing of an Amplifier Circuit by
Means of Genetic Programming. Evolvable Systems:
From Biology to Hardware, Third International
Conference, ICES 2000: 1-10, 2000

[3] D. W. Bradley, Andrew M. Tyrrell, Immunotronics:
Hardware Fault Tolerance Inspired by the Immune
System. Evolvable Systems: From Biology to
Hardware, Third International Conference, ICES
2000: 11-20, 2000

[4] Bretscher P, Cohn M, A theory of self-nonself
discrimination, Science 169, 1042-1049, 1970

[5] Burgess M: Computer Immunology, Proceedings of
LISA XII, 283-297, 1998.

[6] Burnet F, The Clonal Selection Theory of Acquired
Immunity, Vanderbilt University Press, Nashville,
TN, 1959.

[7] Cayzer S, Aickelin U, A Recommender System
based on the Immune Network, Proceedings of the
2002 Congress on Evolutionary Computation, 2002.

[8] Dasgupta D, Majumdar N, Nino F, Artificial
Immune Systems: A Bibliography, Computer
Science Division, University of Memphis, Technical
Report No. CS-02-001, 2001.

[9] Forrest S, Hofmeyr S, Somayaji A, Longstaff T, A
sense of self for Unix processes, Proceedings of the
1996 IEEE Symposium on Research in Security and
Privacy, 120-128, 1996.

[10] Forrest S, http://www.cs.unm.edu/~immsec/, 2002.

[11] Forrest S, Perelson A, Allen L, Cherukuri R, Self-
non-self discrimination in a computer, Proceedings
of the 1994 IEEE Symposium on Research in
Security and Privacy, 202-212, 1994.

[12] Goldsby R, Kindt T, Osborne B, Kuby Immunology,
Fourth Edition, W H Freeman, 2000.

[13] Hofmeyr S, Forrest S, Architecture for an Artificial
Immune System, Evolutionary Computation 8(4),
443-473, 2000.

[14] Janeway C, The immune System evolved to
discriminated infectious nonself from noninfectious
self, Immunology Today 13, 11-16, 1992.

[15] Kim J, Bentley P, An evaluation of negative
selection in an artificial immune for network
intrusion detection, Proceedings of the 2001 Genetic
and Evolutionary Computation Conference, 1330-
1337, 2001.

[16] Kim J, Bentley P, Towards an Artificial Immune
System for Network Intrusion Detection: An
Investigation of Dynamic Clonal Selection.
Proceedings of the 2002 Congress on Evolutionary
Computation, 2002.

[17] Lafferty K, Cunningham A, A new analysis of
allogeneic interactions. Australian Journal of
Experimental Biology and Medical Sciences. 53:27-
42, 1975

[18] Matzinger P, http://cmmg.biosci.wayne.edu/asg/
polly.html

[19] Matzinger P, The Danger Model in Its Historical
Context, Scandinavian Journal of Immunology, 54:
4-9, 2001.

[20] Matzinger P, Tolerance, Danger and the Extended
Family, Annual Review of Immunology, 12:991-
1045, 1994.

[21] Langman R (editor), Self non-self discrimination
revisited, Seminars in Immunology 12, Issue 3,
2000.

[22] Somayaji A, Forrest S, Automated response using
system-call delays, Proceedings of the ninth
USENIX Security Symposium, 185-197, 2000.

[23] Williamson M, Biologically inspired approaches to
computer security, HP Labs Technical Reports
HPL-2002-131, 2000 (available from
http://www.hpl.hp.com/techreports/2002/HPL-
2002-131.html).

 Artificial Immune Systems for Classification : Some Issues

Gaurav Marwah

Department of Computer Science
Mississippi State University

Lois Boggess

Department of Computer Science
Mississippi State University

Abstract
It has recently been shown that Artificial
Immune Systems are not only capable of
performing classification, but that AIRS, a
resource limited Artificial Immune System, is
competitive with some of the best classifiers in
the world on a broad variety of classification
problems. This paper explores some of the issues
that affect the performance of AIRS. These
include modifications to the algorithm for
resource allocation, a policy for handling ties and
approaches to ARB pool organization.

1 Introduction

AIRS (Artificial Immune Recognition System) (Watkins,
2001) is a classifier developed from the principles of
resource limited artificial immune systems (Timmis and
Neal, 2001), which have already been shown to be
effective clustering tools.

AIRS has been applied to a wide variety of publicly
available classification benchmarks (Watkins, 2001),
(Watkins and Boggess, 2002a), (Watkins and Boggess,
2002b), (Goodman, Boggess and Watkins, 2002).
Although the initial objective was simply to show that
artificial immune systems could be used as classifiers,
AIRS proved to be a very good classifier indeed: thus far
it has been among the ten most accurate classifiers known
in every case to which it has been applied, with only one
exception. Often it outperforms some of the best known
classifiers in general use. In one classification problem
from the UCI machine learning repository (Blake and
Merz, 1998), AIRS’s average performance appears to
edge out the best reported classification results
(Goodman, Boggess and Watkins , 2002).

This performance is intriguing for several reasons: AIRS
is self-regulatory in that it is not necessary for a user to
know in advance the best architecture or best set of
parameters for AIRS to perform well. Modifying the
user-adjustable parameters of the system allows AIRS to
be fine-tuned to a given problem domain. Nevertheless
with no fine-tuning at all, AIRS still tends to perform
within a few percentage points of its optimum for the
given domain. Moreover, this is a new classifier, so it
seems reasonable that further study and development may
lead to improvements and even better results.

This paper explores some aspects of AIRS that might
affect its performance as a classifier. The remainder of the
paper is structured as follows; section 2 gives an overview
of AIRS. Section 3 discusses some of the experiments
performed on AIRS. This is followed by conclusions,
acknowledgments and references in that order.

2 AIRS
AIRS is modeled mainly on the mechanisms followed by
the B-cells of the biological immune system. Antigens in
AIRS are instantiated as feature vectors which are
presented to the system during training and testing.
B-cells in AIRS follow the same representation as
antigens. All the B-cells having similar features are
represented together as ARBs (Artificial Recognition
Balls).

AIRS is a resource-bounded supervised learning system.
ARBs compete for a fixed number of resources; this helps
in gradual evolution of those ARBs which represent
training antigens more closely. Another component of
AIRS is the pool of memory cells, which are similar to B-
cells except that they have an extended life span and are
used for actual classification of test antigens. A pool of
ARBs is used for breeding candidate memory cells. The
mechanism to develop a candidate memory cell is as
follows:

1. A training antigen is presented to all the memory
cells belonging to the same class as the antigen.
The memory cell most stimulated by the antigen
is cloned. The memory cell and all the just-
generated clones are put into the ARB pool. The
number of clones generated depends on the
affinity between the memory cell and antigen, and
affinity in turn is determined by Euclidean
distance between the feature vectors of the
memory cell and the training antigen. The smaller
the Euclidean distance, the higher the affinity, the
more is the number of clones allowed.

2. Next, the training antigen is presented to all the
ARB's in the ARB pool. All the ARB's are
appropriately rewarded based on affinity between
the ARB and the antigen as follows: An ARB of
the same class as the antigen is rewarded highly
for high affinity with the antigen. On the other
hand, an out of class ARB is rewarded highly for
a low value of affinity measure. The rewards are

in the form of number of resources. After all the
ARBs have been rewarded, the sum of all the
resources in the system typically exceeds the
maximum number allowed for the system. The
excess number of resources held by ARB’s are
removed in order starting from the ARB of lowest
affinity and moving higher until the number of
resources held does not exceed the number of
resources allowed for the system. Those ARBs,
which are not left with any resources, are
removed from the ARB pool. The remaining
ARBs are tested for their affinities towards the
training antigen. If for any class of ARB the total
affinity over all instances of that class does not
meet a user defined stimulation threshold, then
the ARBs of that class are mutated and their
clones are placed back in the ARB pool. Step 2 is
repeated until the affinity for all classes meet the
stimulation threshold.

3. After ARBs of all classes have met the
stimulation threshold, the best ARB of the same
class as the antigen is chosen as a candidate
memory cell. If its affinity for the training antigen
is greater than that of the original memory cell
selected for cloning at step 1, then the candidate
memory cell is placed in the memory cell pool. If
in addition to this the difference in affinity of
these two memory cells is smaller than a user
defined threshold, the original memory cell is
removed from the pool.

These steps are repeated for each training antigen. After
completion of training the test data are presented only to
the memory cell pool, which is responsible for actual
classification. The class of a test antigen is determined by
majority voting among the k most stimulated memory
cells, where k is a user defined parameter.

3 Experiments

3.1 Handling Ties

The current version of AIRS follows a k nearest neighbor
voting scheme for classification. This means that majority
voting among the k most stimulated memory cells
determines the class of the test antigen. For a k value of 1
only the most stimulated memory cell is used for
prediction. An important question that comes to mind for
higher values of k is "What should be done in case of a
tie?’’ That is, how should the class be determined when
two or more classes have an equal number of memory
cells among the k strongest stimulated memory cells? One
straightforward answer to this might be that nothing needs
to be done: since k is a training parameter, a different
value of k may be chosen which might result in fewer ties.

Though this approach may prove successful in many
cases, there is no guarantee that a value of k which
minimizes ties will also maximize accuracy. This is

because the parameter k affects both the accuracy and the
number of ties independently.

Since there is no inherent reason to suppose that changing
the value of k is likely to be the best way to handle ties,
we therefore propose a number of alternatives for
handling ties. The effect of these approaches on the
accuracy of the classifier varies depending on the
characteristics of the problem.

The need for these alternatives was realized while testing
AIRS on the well-known and publicly available yeast data
set, which appears to be a difficult classification problem.
The data set was obtained from the repository of the
University of California at Irvine (Blake and Merz, 1998)
and contained 1484 instances representing ten classes.
Ten-way cross validation was performed and the best
accuracy rate obtained after optimal setting of parameters
was 51.23%. For purposes of comparison, the original
donor of that dataset to UCI, Paul Horton, after extensive
experimentation on that classification problem reported a
best accuracy of about 60%, with a best previously known
accuracy of 55% (Horton and Nakai, 1997).

Table 1 and Table 2 show some of the characteristics of
the problem, which suggest that it is the distinction
between the first three classes that poses the maximum
challenge to classifiers.

Table 1: Confusion Matrix for a Test Run on Yeast Data

20 11 6 0 0 0 0 0 0 0
22 15 5 0 0 0 0 0 0 0
8 0 7 0 0 0 0 0 0 0
1 3 0 4 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 7 0 0 0 0
1 0 0 0 0 2 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0

Table 2. Collision Matrix for Classification Ties in Test
Run on Yeast Data

0 7 1 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The confusion matrix and collision matrix shown in
Tables 1 and 2 were obtained using a single training
(1364 instances) and test set (120 instances) of yeast data
set on AIRS. The contents of the matrices shown in the
above tables are for the test data only. The value in row i,
column j of a confusion matrix represents the number of
instances of class i that were classified as belonging to
class j. All the diagonal entries therefore represent test
instances that were correctly classified. All other entries
represent instances of incorrect classification. As an
example, the first entry in row 2 of Table 1 shows that
there were 22 test instances belonging to class 2 that were
wrongly classified as belonging to class 1. Similarly, the
first entry in row 3 shows that 8 test instances of class 3
were wrongly classified as class 1. Indeed, it is the first
three classes which cause maximum inaccuracy. In part,
this is because the instances of these classes occur in
maximum proportions.

The nature of the yeast classification problem is such that
the given features are not sufficient to distinguish between
classes. However, inaccuracy due to wrong prediction of
class in case of a tie between two or more classes can be
better handled. Table 2 shows the content of what we call
the collision matrix that helps to understand this situation.
An entry in row i, column j of the collision matrix
represents the number of times an actual member of class
j was involved in a tie with class i and lost it. It shows that
class 2 lost to class 1 on seven occasions whereas class 1
never lost to class 2. The matrices shown are for only one
instance of training and test sets; nevertheless it is
representative of our observation over many runs that
only the upper triangular region of collision matrix
contained nonzero entries. This was found to be because
of the approach followed by the original AIRS algorithm
for tie breaking, which is described next.

AIRS handles ties on a first labeled first served basis.
This means that in case of a tie, the class that was labeled
earlier wins the tie. For example, in the case of the yeast
problem, class 1 will never lose the tie and class 10 will
always lose the tie. This is the reason behind high values
in the first row of the collision matrix. This tie-breaking
scheme may be appropriate for a k nearest neighbor-style
classifier if the basic classification algorithm is modified
to ensure that classes are labeled in decreasing order of
relative proportion, for in that case a tie will always go in
favor of the class with higher proportional representation.
One drawback however is that such a tie-breaking rule
never rules in favor of the less frequent class.

We suggest multiple methods for handling ties. Because
different methods may work best for different
classification problems, we suggest that the actual choice
of method be used as a training parameter.

 Four different approaches for tie breaking were tried and
are described next.

1. Sum of affinities:

This method uses the sum of affinities of memory cells of
the same class among the k strongest stimulated memory

cells. The class with highest combined affinity represents
the predicted class for the test antigen. One feature of this
method is that it completely replaces the typical k nearest
neighbor voting scheme, and is always used irrespective
of an actual tie being present or not. Because it involves
floating point values the likelihood of a tie is extremely
remote using this approach.

Use of sum of affinities gives more influence to highly
stimulated memory cells, and the relative effect of less
stimulated memory cells is low.

2. Selection based on class proportions:

Unlike the sum of affinities method, this method is
utilized only in case of an actual tie. It predicts the class
of the test antigen based on class proportions of
competing classes in the training set. For example, in a
two way tie if one of the classes occurred twice as often
as the other during the training process, than the chances
of the tie going in favor of that class will be twice that of
the other. This approach is expected to perform better
than other approaches for noisy classification problems,
including the yeast classification problem.

3. Including more memory cells.

This method involves looking at more memory cells in
case of a tie. Memory cells beyond the k strongest
stimulated ones are also incorporated into the vote one at
a time until the tie is broken or the number of additional
memory cells exceeds some predefined value,
k_additional, which can be set as a fixed proportion of k.
In case the tie is not broken and the number of additional
cells becomes equal to k_additional, the selection
approach described in method 2 may be used.

This approach effectively increases the k value for those
test cases where there is a tie while leaving it the same for
other instances. Consequently, there is some separation
between the value of k and its effect on accuracy and on
tie breaking. This approach may be modified so that
instead of using additional memory cells, fewer memory
cells may be used until the tie is broken.

4. First come first served.

This method uses the affinities of the most stimulated
memory cell of each of the competing classes to decide
the tie. What this means is that once a tie has occurred
among two or more classes, the class which has the
highest stimulated memory cell is chosen.

Table 3 shows accuracy rates obtained for the yeast data
set using different alternatives for handling ties. These
results were obtained using the same set of AIRS
parameters and a single test and training set. Class
prediction based on relative class proportions seems to
work best for this case as expected. Also, prediction based
on looking for more memory cells in case of a tie works
better than the original approach followed by AIRS.

The reason behind the better performance of “selection
based on class proportion” is that it probabilistically
breaks the tie based on relative frequency of occurrence
of various classes during training cycle. As such, it is

expected to work well for noisy classification problems in
which the relative frequency of classes may be the only
useable data in the toughest classification regions of the
problem space.

Table 3: Accuracy Rates For Yeast Data Set Using

Different Approaches For Tie Breaking

Method Accuracy

First labeled first served 46.67 %

Sum of affinities 44.17 %

Selection based on class
proportions

48.33 %

Including more memory
cells

47.5 %

First come first served 44.72 %

The “sum of affinities” method does not do particularly
well for this case. This method will do well if the memory
cells representing the true classes are more highly
stimulated in the aggregate than their equally numerous
but less highly stimulated competitors in the tie-breaking
region.

The “First come first served” approach is highly biased in
favor of highly stimulated memory cells. This approach
will be helpful when the best memory cells of competing
classes in the tie-breaking region are representative of
their classes for that region.

3.2 ARB Pool Reorganization

As already described, AIRS uses the memory cell pool for
actual classification of test antigens, whereas the ARB
pool is used along with the memory cell pool during
training. The ARB pool is used as a breeding ground for
candidate memory cells.

Watkins (personal communication) modified the ARB
pool organization so that the most recent version of AIRS
no longer keeps track of ARBs from previous training
instances. The reason behind this can be explained as
follows:

During training on an antigen, the stimulation threshold is
used as a stopping criterion. Training on an antigen is
continued until all the classes satisfy the requirements of
the stimulation threshold: for all ARBs of the same class
as the antigen their affinity for the current training antigen
should be greater than the user-defined stimulation
threshold. In addition, for all out of class ARBs the
affinity should be less than (1 – stimulation threshold).
For example, for a stimulation threshold of 0.8, all in-
class ARBs should have affinities with the training
antigen greater than 0.8, and all out of class ARBs should
have affinities less than 0.2. The eventual effect of this

process is that at the end of training the out of class ARBs
remaining are extremely distant from the training instance
and not very useful for producing candidate memory cells
during training on subsequent antigens.

Therefore, in the modified version of AIRS (Watkins,
personal communication), all ARBs from previous
training are removed, and only the most simulated
memory cell along with its clones is allowed in the ARB
pool. This modification does not seem to affect the
accuracy of the classifier for some of the problems on
which it has been tested (Watkins, personal
communication). However, it greatly decreases the
diversity in the ARB pool. We tried two other approaches
for ARB pool reorganization.

1. In the first approach, the ARBs from previous training
stages were allowed to exist and compete for resources in
the ARB pool; however affinities between out of class
ARBs and the current antigen were not considered. What
this means is that ARBs from previous instances did not
undergo mutation and therefore represented previously
seen antigens and any memory cells developed for them
more closely.

2. In the second approach, the ARBs from previous
stages were allowed to exist and compete for resources. In
addition, ARBs of all classes were required to have
affinities with the training antigen satisfying some
stimulation threshold, but the stimulation threshold for out
of class ARBs was somewhat relaxed as compared to in
class ARBs.

Table 4 shows the accuracy rates obtained for the iris data
set using the approaches just described. Five way cross
validation was performed to achieve these results.

Table 4: Accuracy Rates For Iris Data Set Using Different
Approaches For ARB Pool Organization

Scheme for ARB pool
organization

Accuracy

Competition between ARBs
of different classes and
affinities for all classes of
ARB to satisfy stimulation
threshold.

96.7 %

Competition for resources
only, affinities between out
of class ARBs and antigen
not considered.

95.56 %

Competition for resources
with relaxed condition
regarding affinities for out of
class ARBs.

96.23 %

At least for the present, our results support the assumption
that diversity of out of class ARBs in the ARB pool is not
a significant factor in quality of memory cells generated.

3.3 Resource Allocation

As already mentioned, AIRS is a resource bounded
supervised learning system. A fixed number of resources
are distributed among ARBs based on their affinities for
current training antigen. This competition of resources
helps in evolution of ARBs that represent training
antigens more and more closely. The scheme used by
AIRS for resource allocation is that half of the resources
are distributed among ARBs of same class as the current
training antigen, and the other half is distributed among
ARBs of other classes.

Another approach that was tried distributed resources
based on class proportions obtained from training data.
The classes of antigen occurring more frequently were
allocated more resources and those occurring less
frequently were allocated fewer resources.

Table 5: Accuracy Rates For E.coli And Yeast Data Sets
Using Different Methods For Resource Allocation.

Method used for
resource allocation

Accuracy
(E.Coli)

Accuracy
(Yeast)

Half the resources for in
class ARBs and the other
half for out of class
ARBs.

85.71 % 52.23 %

Resource allocation based
on class proportions.

86.30 % 51.08 %

Table 5 shows the accuracy rates obtained using the two
approaches for resource allocation for the yeast and E.coli
data sets. Five way cross validation was performed for the
E.coli data set and for the yeast data set ten fold cross
validation was performed. The results are averaged over
three runs for each case. It shows a marginal increase in
accuracy for the E.coli data set using resource allocation
based on class proportion; however for the yeast data set
accuracy decreased using this approach. We point out in
passing that the best reported accuracy at the UCI web
site for the E.coli data set is 81% (Blake and Merz, 1998).

4 Conclusions

Since AIRS is a very recent classifier, there are many
possible areas for exploration of the algorithm. In this
paper we have explored several different algorithms for
tie breaking which could increase the accuracy of AIRS
and other k nearest neighbor classifiers, especially for
tougher classification problems. On the other hand,
variations on resource allocation and ARB pool

organization which were investigated were mixed or
ineffective in improving the original AIRS algorithm. In
the course of these investigations, AIRS produced a
higher average accuracy for one of the testbeds than any
reported at the UCI repository for that testbed.

Acknowledgments

We are grateful to Andrew Watkins for providing his
code for AIRS and some of the data sets. We would also
like to extend thanks to Don Goodman for providing his
data set and scripts, which were very useful in better
understanding of the problem.

References

Blake, C.L and C.J Merz. 1998. UCI Repository of
machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.
University of California at Irvine, Department of
Computer Science.

Goodman, D., L. Boggess and A. Watkins, 2002.
Artificial Immune System Classification of Multiple-
Class Problems. Artificial Neural Networks In
Engineering, ANNIE 2002 (accepted).

Horton, P. and Kenta Nakai. 1997. Better Prediction of
Protein Cellular Localization Sites with k Nearest
Neighbors Classifer. In Proceedings, Intelligent Systems
in Molecular Biology, 368-383.

Timmis, J. and M Neal. 2001. A Resource Limited
Artificial Immune System for Data Analysis. Knowledge
Based Systems 14(3-4): 121-130.

Watkins, A. 2001. AIRS: A Resource Limited Artificial
Immune Classifier. M.S Thesis, Department of Computer
Science, Mississippi State University.

Watkins, A. and L. Boggess. 2002a. A New Classifier
Based on Resource Limited Artificial Immune Systems.
In Proceedings of the 2002 Congress on Evolutionary
Computation (CEC2002), IEEE Press. Vol 2: 1546-1551.

Watkins, A. and L. Boggess. 2002b. A Resource Limited
Artificial Immune Classifier. In Proceedings of the 2002
Congress on Evolutionary Computation (CEC2002),
Special Session on Artificial Immune Systems, IEEE
Press. Vol 1: 926-931.

On the Effects of Idiotypic Interactions for Recommendation
Communities in Artificial Immune Systems

Steve Cayzer
Hewlett-Packard Laboratories

Filton Road

Bristol

BS12 6QZ

Steve_Cayzer@hp.com

Uwe Aickelin
Department of Computing

University of Bradford

Bradford

BD7 1DP

u.aickelin@bradford.ac.uk

Abstract

It has previously been shown that a
recommender based on immune system idiotypic
principles can outperform one based on
correlation alone. This paper reports the results
of work in progress, where we undertake some
investigations into the nature of this beneficial
effect. The initial findings are that the immune
system recommender tends to produce different
neighbourhoods, and that the superior
performance of this recommender is due partly to
the different neighbourhoods, and partly to the
way that the idiotypic effect is used to weight
each neighbour’s recommendations.

1 INTRODUCTION
The idiotypic effect builds on the premise that antibodies
can match other antibodies as well as antigens. It was first
proposed by Jerne [6] and formalised into a model by
Farmer et al [3]. The theory is currently debated by
immunologists, with no clear consensus yet on its effects
in the humoral immune system [5]. In a previous paper
[1], we have shown that the incorporation of idiotypic
effects can be beneficial for Artificial Immune System
based recommender systems.

However, in that paper we did not explore the
mechanisms of that beneficial effect. Such an exploration
would seem worthwhile, particularly if this results in
identifying the underlying causes of the improvements of
the ‘characteristics’ of a community (either by changing
its membership, or by evaluating the relative merit of each
member). Such an effect will be generally useful in a
range of applications, of which recommender systems
provide just one example. In addition, a deeper
understanding of the idiotypic effect may prove useful to
the designers of other Artificial Immune System
applications.

In this paper, we present the results of work undertaken to
better understand the idiotypic effect. In order to set the
context, the next section provides a definition of the
idiotypic effect and the following one a brief review of
Artificial Immune System based recommenders. We then
present and discuss the results of our analysis to date.

2 IDIOTYPIC EFFECTS
The idiotypic network hypothesis was first proposed by
Jerne [6]. It builds on the recognition that antibodies can
match other antibodies as well as antigens. Hence, an
antibody may be matched by other antibodies, which in
turn may be matched by yet other antibodies. This
activation can continue to spread through the population.
The idiotypic network has been formalised by a number
of theoretical immunologists in [7]. This theory could
help explain how the memory of past infections is
maintained. Furthermore, it could result in the suppression
of similar antibodies thus encouraging diversity in the
antibody pool.

The following is a formal equation for the idiotypic effect
adapted from Equation 3 from Farmer [3]:

)1(2
11 1

1 i

n

j
jiji

N

j

N

j
jiijjiji

i

xkyxmxxmkxxmc

rate

death

recognised

antigens

recognised

amI

recognised

antibodies
c

dt
dx

−







+−=







−














+





−





=

∑∑ ∑
== −

Where:

N is the number of antibodies

n is the number of antigens.

xi (or xi) is the concentration of antibody i (or j)

yi is the concentration of antigen j

c is a rate constant

k1 is a suppressive effect and k2 is the death rate

mji is the matching function between antibody i and
antibody (or antigen) j

As can be seen from the above equation, the nature of an
idiotypic interaction can be either positive or negative.
Moreover, if the matching function is symmetric, then the
balance between “I am recognised” and “Antibodies
recognised” (parameters c and k1 in the equation) wholly
determines whether the idiotypic effect is positive or
negative, and we can simplify the equation. We can
simplify the equation still further if we only allow one
antigen in the Artificial Immune System. The simplified
equation looks like this:

)2(3
1

2
1 iji

n

j
ijii

i xkxxm
n
k

yxmk
dt
dx

−−= ∑
=

Where:

k1 is stimulation, k2 suppression and k3 death rate

mi is the correlation between antibody i and the (sole)
antigen

xi (or xi) is the concentration of antibody i (or j)

y is the concentration of the (sole) antigen

mij is the correlation between antibodies i and j

n is the number of antibodies.

3 RECOMMENDER SYSTEM
At this point, it is worth reviewing how this model can be
applied to recommender systems. Full details can be
found in [1], but a brief overview follows.

Recommender systems are those that use collaborative
filtering techniques to produce predictions and
recommendations [4]. So for example a movie
recommender system would, given a film, provide a
prediction for that film (i.e. an estimated rating for you).
It might also provide a list of recommended films (i.e.
films which it estimates that you would prefer over
others). It does this by comparing users together (based on
their votes for movies), and preparing some
‘neighbourhood’ of like-minded users from which it can
produce predictions and recommendations.

The main loop of the recommender algorithm is shown in
Figure 1 and is the core of our Artificial Immune System.
The aim of this algorithm is to increase the concentrations
of those antibodies (database users) that are similar to the
antigen (target user) and yet different from each other.
The process is thus subject to the suppression of similar
antibodies following Jerne’s idiotypic ideas mentioned
above. Thus, over time the Artificial Immune System
contains high concentrations of a diverse set of users who
have similar film preferences to the target user.

The algorithm is terminated either when there are no more
users to try, or when the Artificial Immune System is
stabilised, i.e. it is full, and has not changed in
consistency for more than ten iterations. The
concentrations and correlations of the users in the final
neighbourhood, i.e. final immune system iteration, are

then used to calculate a weighted sum of the ratings of
movies.
Initialise Artificial Immune System

Encode user for whom to make predictions as
antigen Ag

WHILE (Artificial Immune System not stabilised)
& (More data available) DO

Add next user as an antibody Ab

Calculate matching score between Ab and Ag

Calculate matching scores between Ab and other
antibodies

WHILE (Artificial Immune System at full size) &
(Artificial Immune System not stable) DO

Iterate Artificial Immune System

OD

OD

Figure 1: Main loop of the Artificial Immune System’s algorithm for
recommendation.

Our previous work [1] compared two predictors, one
based on a Simple Pearson test and one on our Artificial
Immune System. In each case, a test user is taken from a
database, and then predictions and recommendations are
made for that user. Both predictors work by finding a
neighbourhood and using that neighbourhood to produce
predictions and recommendations.

Prediction quality is assessed by measuring the mean
absolute error (details in [1]). Recommendation quality is
assessed by comparing the ranked recommendations with
the user’s ranked ratings for the recommended films.
Kendall’s Tau can now be applied. This measure reflects
the level of concordance in the lists, and proceeds by
counting the number of discordant pairs. To do this we
order the films by actual vote and apply the following
formulae to the recommended films:

()

()

()


 >

=

=

−
−=

∑ ∑
= +=

otherwise

rrif
rrD

rrDN

nn
N

ji
ji

n

i

n

ij
jiD

D

0

1
,

,

1
4

1

1 1

τ

(3)

Where:
n is the overlap size
ri is the actual rank of film i as recommended by the
neighbourhood.

Note that i here refers to the recommended rank of the
film, not the film ID. ND is the number of discordant pairs,
or, equivalently, the expected cost of a bubble sort to
reconcile the two lists. D is set to one if the rankings are
discordant.

 2a) E ffe c t o f S tim u la tio n o n N e ig h bo u rh o o d s iz e

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 0 .2 0 .4 0 .6 0 .8 1

S tim u la tio n R a te

N
ei

gh
bo

ur
ho

od
 S

iz
e

(2b) E ffec t o f s tim u la tio n o n n u m b e r o f u s ers lo o ke d at

0

5 0 0 0

1 0 0 00

1 5 0 00

0 0 .2 0 .4 0 .6 0 .8 1

S tim u la tio n R a te

N
um

be
r

of
 u

se
rs

 lo
ok

ed
 a

t

Figure 2: Effect of stimulation rate on neighbourhood size and reviewers looked at.

For the Simple Pearson case, the neighbourhood is
composed of the ‘top N’ correlated users, where
correlation is measured by the Simple Pearson statistical
measure. In the Artificial Immune System case, the
neighbourhood is created by building an immune system
with the test user as the antigen, the neighbours as
antibodies, and the Simple Pearson measure as a matching
function. (In fact, in our experiments, this measure was
weighted by the a fraction proportional to the number of
films both users had seen, in order to penalise correlations
made on the basis of only a few films). The behaviour of
the neighbourhood is then governed by equation 2, with
poorly performing antibodies being deleted from the
neighbourhood. Note that we have treated the idiotypic
effect as suppressive.

4 ANALYSIS OF EFFECTS
Although both the Artificial Immune System and Simple
Pearson recommender algorithms are based on Pearson
correlations, they act differently for a number of reasons:

• The choice of neighbours is different. In the Simple
Pearson, the 100 highest correlated users (or all users
that show any correlation, if this is less than 100) are
chosen to form a neighbourhood. In the Artificial
Immune System, this general rule is followed, except
that stimulation adds threshold and idiotypic effect
adds diversity.

• Even given the same neighbours, the weighting is
different. In the Simple Pearson, the neighbour
weight is simply the correlation between that
neighbour and the test user. In the Artificial Immune
System, this correlation is multiplied by that
antibody’s (neighbour’s) concentration, which in turn
is determined by running the Artificial Immune
System algorithm over the neighbourhood.

To deal with the first point, the stimulation rate provides
some fixed threshold for the correlation of any antibody
with the antigen. Even in the absence of any idiotypic
interactions, an antibody’s correlation (weighted by the
stimulation rate) must outweigh the death rate; otherwise,
it will not survive in the Artificial Immune System. So, at

low stimulation rates it may prove difficult to fill the
Artificial Immune System completely. Conversely, at
very high stimulation rates it may not be necessary to
examine all the supplied users in order to fill an Artificial
Immune System.

This effect was noted in our previous paper [1] and can be
seen in Figure 2. Such a thresholding effect has been
shown to be beneficial by Gokhale [4] in maintaining the
quality of a neighbourhood by filtering out poorly
correlated users (the Simple Pearson will consider all
reviewers who have at least one vote in common with the
test user).

Thus, the idiotypic effect should be viewed in the context
of providing further refinement to a neighbourhood that is
already known to be in some sense ‘good’. Since the
effect (in our model) is always negative, its impact may
be to improve diversity by removing ‘suboptimal’ users
from the Artificial Immune System. Conversely, it might
be that the idiotypic effect is effective because, given a
neighbourhood, it changes the weight of each neighbour
(or concentration of each antibody) in that
neighbourhood. This is the second point highlighted
above.

In order to test out these hypotheses, we took a sample
result, based on 100 predictions for detailed analysis. The
3 settings for each algorithm were as detailed in [1]
except that default votes were not used. Thus, if a
neighbour has not seen a film then that neighbour is
ignored when making a prediction for that film. The
Artificial Immune System parameters were set to ‘good’
values (as observed in the previous paper): thus
stimulation rate was set to 0.3 and suppression rate to 0.2.
As reported previously, the prediction performance (mean
absolute error) was not significantly different between the
two algorithms, but recommendation (Kendall’s Tau) was
significantly better for the Artificial Immune System
recommender (as before, a Wilcoxon matched pairs
signed rank test was used to assess significance).

Comparison of neighbourhoods for AIS and SP predictors

0

20

40

60

80

10 0

12 0

A IS S P

P re d ictor typ e

N
ei

g
h

b
o

u
rh

o
o

d
 s

iz
e

U nique

C om m o n

Figure 3: Comparison of Artificial Immune System and Simple
Pearson neighbourhoods. The total size of each bar represents the
total size of the neighbourhoods produced by each predictor
(averaged over 100 predictions; bar shows standard deviation). The
lower part of each bar shows the average number of common
neighbours (i.e. appearing in both neighbourhoods). The remainder of
the bar is composed of unique neighbours – that is, neighbours who
appeared in one neighbourhood but not the other.

The first thing to observe is that the neighbourhoods
produced by each algorithm are different. As implied
from the above, Simple Pearson tended to produce large
neighbourhoods (average 95.4 as opposed to 73.8 using
the Artificial Immune System) and Figure 3 shows that
the composition of these neighbourhoods is different. In
particular, it does not seem that the Artificial Immune
System neighbourhoods are merely subsets of the
Simple Pearson neighbourhoods. In fact, the vast
majority of neighbours are ‘unique’ – that is, chosen by
one algorithm but not the other

Is it the neighbourhoods that make the difference to
prediction and recommendation performance? Figure 4
shows Artificial Immune System and Simple Pearson
performance on both neighbourhoods. For this
experiment, we recorded the neighbourhoods found by
both the Artificial Immune System and Simple Pearson
algorithms.

We then reran the predictions, with everything the same
except that this time we forced the Artificial Immune
System and Simple Pearson algorithms to use our
‘fixed’ neighbourhoods. We can see that for prediction,
changing the neighbourhood (or indeed algorithm) did
not seem to make any significant difference (Table 1
has the details of the statistical tests). However, for
recommendation, although the means are very similar
(Fig 4), the Artificial Immune System neighbourhood
usually produced better recommendations than the
Simple Pearson neighbourhood (Table 1b). In fact, the
neighbourhood effect seems to dominate, since given
the Artificial Immune System neighbourhood, the
Simple Pearson algorithm appears to do significantly
better than the Artificial Immune System algorithm for
recommendation. There is one exception to this trend,
where the Artificial Immune System algorithm does not
do significantly better for either neighbourhood. In
addition, the Artificial Immune System algorithm does
better on the Simple Pearson neighbourhood than the
Simple Pearson algorithm does, indicating that the
neighbour weightings, as well as the neighbours
themselves, also contribute to the recommendation
quality.

We ran these experiments using default votes
(neighbours who had not voted on a film were assumed
to give the film a slightly negative rating) and obtained
similar results.

It is worth pointing out at this stage that these results
should not be taken to be exhaustive, merely indicative.
Indeed, we would not want to draw any firm
conclusions based on only 100 predictions. This point
will be returned to in the discussion. Nevertheless, the
results obtained so far seemed to indicate that it was
worth investigating the contribution of neighbourhood
composition to recommendation performance.

Fig 4a Fig 4b

Effec t o f n e ig hb o urho o d o n predic tio n p erfo rm an ce

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

SPp redic to rS
Pn eighb ourh ood

A ISpredict
orS

P ne ig hbou rhoo d

SPp redic to rA
IS ne ig hbou rhoo d

A ISpredito
rA

IS ne ighbo urho od

M
ea

n
ab

so
lu

te
 e

rr
or

Effect of neighbourhood on recommendation performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SPpred
ict

orS
Pneig

hb
ou

rh
oo

d

AIS
pr

ed
ict

or
SPne

ighb
ou

rho
od

SPpred
ict

orA
IS

ne
ighb

ou
rho

od

AIS
pr

ed
ict

or
AIS

ne
igh

bo
ur

ho
od

R
ec

om
m

en
da

tio
n

pe
rf

or
m

an
ce

 (K
en

da
ll'

s
Ta

u)

Figure 4: Effect of neighbourhood composition for Artificial Immune System and Simple Pearson algorithms. See text for details on fixing the
neighbourhoods. Fig 4a shows prediction performance (measured as mean absolute error averaged over 100 predictions) for each algorithm and each
neighbourhood. Fig 4b shows recommendation performance deviation. (measured as Kendall’s Tau averaged over 100 predictions) for each algorithm
and each neighbourhood. Bars show standard deviation.

Table 1: Analysis of differences between neighbourhoods and algorithms for both prediction (1a) and recommendation
(1b). In each case, the Wilcoxon significance test was applied to the results obtained from each pair of regimes. Regimes
that are significantly better are shown in bold (there were no significant differences found for prediction). [AIS =
Artificial Immune System; SP = Simple Pearson]

Table 1a
1st

Predictor
1st

neighbourh
ood

2nd

Predictor
2nd

neighbourh
ood

Median 1 Median 2 Number of
(unequal)

predictions
compared

1st regime
better

(sum of
ranks)

2nd regime
better

(sum of
ranks)

Significanc
e (upper
bound)

SP SP AIS SP 0.682 0.697 97 2212 2541 0.5551
SP SP SP AIS 0.682 0.658 97 2163 2590 0.4434
SP SP AIS AIS 0.682 0.652 97 2176 2577 0.4717
AIS SP SP AIS 0.697 0.658 97 2256 2497 0.6659
AIS SP AIS AIS 0.697 0.652 97 2258 2495 0.6711
SP AIS AIS AIS 0.658 0.652 84 1706 1864 0.7263

Table 1b
1st

Predictor
1st

neighbourh
ood

2nd

Predictor
2nd

neighbourh
ood

Median 1 Median 2 Number of
(unequal)

predictions
compared

1st regime
better

(sum of
ranks)

2nd regime
better

(sum of
ranks)

Significanc
e (upper
bound)

SP SP AIS SP 0.525 0.557 83 801 2685 1.917e-05
SP SP SP AIS 0.525 0.549 83 707.50 2778.50 2.617e-06
SP SP AIS AIS 0.525 0.542 85 930 2725 8.483e-05
AIS SP SP AIS 0.557 0.549 82 1218.50 2184.50 0.02571
AIS SP AIS AIS 0.557 0.542 80 1426 1814 0.3534
SP AIS AIS AIS 0.549 0.542 78 2149 932 0.002459

We looked at a variety of neighbourhood parameters (we
might term these community characteristics) across
Simple Pearson and Artificial Immune System
neighbourhoods. Four characteristics are of particular
interest, and each will be discussed in turn. Firstly, it
might seem reasonable to assume that performance
improves with the number of neighbours in a
neighbourhood. However, clearly there is a cost in
collecting neighbours (of appropriate quality) together,
and thus it will be useful if we can provide good quality
recommendations from smaller neighbourhoods.

Another characteristic is the overlap size, which governs
the number of recommendations we can assess (An
overlap is a test user vote that is also contained in the
union of all neighbours’ votes). Thirdly, we looked at
correlation between each neighbour and the test user. A
high correlation shows that neighbours are clustered
‘tightly’ around the test user, which we might imagine
would provide for better recommendations. Fourthly, the
idiotypic effect is expected to reduce the inter-neighbour
correlations. An obvious intuition might be that such a
reduction causes an increase in recommendation quality.

Table 2 shows the difference in these community
characteristics across Simple Pearson and Artificial
Immune System neighbourhoods. It can be seen that the
Artificial Immune System does produce neighbourhoods
that are measurably different in character to the Simple
Pearson neighbourhoods. In summary, the Artificial
Immune System neighbourhoods are smaller, have less

overlap, are generally less correlated with the test user
and have lower inter-neighbour correlations.

In order to test out which (if any) of these characteristics
is crucial, we plotted recommendation performance
against each for the Artificial Immune System algorithm.
The results seem to show that none of these characteristics
on their own influences the performance in a clear way.
Figure 5 shows scatter plots generated for each
characteristic against recommendation quality. Trend
lines (based on a power law) have been added to
emphasise any underlying data trends.

The first plot suggests that neighbourhood size is not
essential in order to obtain high quality recommendations.
The second plot, however, does suggest that small overlap
sizes might be beneficial for producing good
recommendations (regression analysis has not been
performed so at this stage this is merely a suggestion).
This in some sense is intuitive, as it might be easier to
produce higher quality recommendations if there are less
of them. However, a balance needs to be struck here; once
the overlap size gets too low, the neighbourhood may no
longer prove useful to the user.

The third plot shows that, perhaps surprisingly, high
correlation between neighbours and the test user may not
be essential for high quality recommendations. Finally,
the fourth plot would seem to indicate that reduced inter-
neighbour correlation is not important in recommendation
accuracy, or at least if it is responsible, it is part of a wider
effect.

Table 2: Analysis of difference in neighbourhood characteristics between Simple Pearson and Artificial Immune System algorithms. Four
characteristics are shown. In each case, the Wilcoxon significance test was applied to the neighbourhoods obtained from the algorithms. In all four
cases, the value for the Simple Pearson was significantly higher; this is indicated by bold type.

1st Predictor 2nd Predictor Neighbourhood
characteristic

tested

Mean 1 Mean 2 Number of
(unequal)

neighbourhoods
compared

1st

neighourhood
has higher

value
(sum of ranks)

2nd

neighourhood
has higher

value
(sum of ranks)

Significance
(upper
bound)

Simple
Pearson

Artificial
Immune
System

Neighbours 95.40 73.75 97 4602 151 1.196e-15

Simple
Pearson

Artificial
Immune
System

Overlap 47.46 46.39 26 334.50 16.50 5.686e-05

Simple
Pearson

Artificial
Immune
System

Correlation 0.12 0.10 79 2566 594 1.465e-06

Simple
Pearson

Artificial
Immune
System

Neighbour
correlation

0.15 0.04 83 3477 9 3.572e-15

Fig 5a Fig 5b

 Effect of neighbourhood size on recommendation accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Neighbourhood Size

R
ec

om
m

en
da

tio
n

A
cc

ur
ac

y
(K

en
da

ll'
s

T
au

)

 Effect of overlap size on recommendation accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Overlap Size

R
ec

om
m

en
da

tio
n

A
cc

ur
ac

y
(K

en
da

ll'
s

T
au

)

Fig 5c Fig 5d
 Effect of correlation with test user on recommendation accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

Adjusted Correlation with test user (median)

R
ec

om
m

en
da

tio
n

A
cc

ur
ac

y
(K

en
da

ll'
s

T
au

)

 Effect of inter-neighbour correlation on recommendation
accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Adjusted Inter neighbour correlation (median)

R
ec

om
m

en
da

tio
n

A
cc

ur
ac

y
(K

en
da

ll'
s

T
au

)

Figure 5. Effect of various neighbourhood measures on Artificial Immune System recommendation performance. In each graph, the measure is shown
on the x-axis. The recommendation performance (where available) for each of 100 Artificial Immune System predictions is plotted against this
neighbourhood measure. Trend lines are added to indicate the underlying data trend (if any).

5 DISCUSSION AND CONCLUSIONS
As mentioned previously, it is not claimed that these
results are conclusive. Indeed, much more data is required
before any firm conclusions can be drawn. In this respect,
this paper is very much a work in progress. Nevertheless,
the results to date certainly are indicative, and challenge
certain assumptions. It is hoped that the presentation of
these results will stimulate discussion and interest in the
nature of the idiotypic effect.

It does not seem likely that the idiotypic effect can be
captured by one particular measurement. Nevertheless, it
is likely to be some combination of factors. For example,
we have shown that both the neighbourhood choice and
the weighting of neighbours within that neighbourhood
can influence the recommendation performance. Pinning
down the effect further has proved to be problematic. Our
first intuition – that spreading out neighbours by reducing
inter-neighbour correlation improves recommendation –
appears to be at best incomplete and at worst incorrect.
The mechanisms underlying the effect are clearly subtler
than this.

There are of course other community characteristics that
we could explore. Some (for example, number of
recommendations, overlaps per neighbour, absolute
correlation scores) have been examined and shown to be
equally inconclusive. Some (for example, number of
neighbours voting on each film) remain potential future
subjects for investigation.

Other tests (e.g. setting each neighbour’s concentration to
a random number for immune system predictions, to see
whether accurate concentrations are really necessary)
might shed further light on the relative importance of each
measure. But it is our intuition that such studies might not
really get at the nature of the effect, and that larger scale
or more sophisticated tests will be needed, coupled with
perhaps analytical work, to get at the heart of this
intriguing phenomenon.

There are wider implications for such work. The database
used for this study [2] is based on real peoples’ profiles.
Thus, any headway made into improving neighbourhoods
by the idiotypic effect can have real benefit for other
recommenders – and indeed any community based
application.

References
[1] Cayzer S, Aickelin U, A Recommender System

based on the Immune Network, Proceedings of the
2002 Congress on Evolutionary Computation, 2002.

[2] Compaq Systems Research Centre. EachMovie
collaborative filtering data set,
http://www.research.compaq.com/SRC/eachmovie/.

[3] Farmer JD, Packard NH and Perelson AS, The
immune system, adaptation, and machine learning
Physica, vol. 22, pp. 187-204, 1986.

[4] Gokhale A, Improvements to Collaborative Filtering
Algorithms 1999. Worcester Polytechnic Institute.
http://www.cs.wpi.edu/~claypool/ms /cf-improve/.

[5] Goldsby R, Kindt T, Osborne B, Kuby Immunology,
Fourth Edition, W H Freeman, 2000.

[6] Jerne NK, Towards a network theory of the immune
system Annals of Immunology, vol. 125, no. C, pp.
373-389, 1973.

[7] Perelson AS and Weisbuch G, Immunology for
physicists Reviews of Modern Physics, vol. 69, pp.
1219-1267, 1997.

An Artificial Immune System as a Recommender for Web Sites

Tom Morrison

University of the West of England

Frenchay Campus Bristol

BS16 1QY

tom.morrison@uwe.ac.uk

Uwe Aickelin

Department of Computing

University of Bradford

BD7 1DP

u.aickelin@bradford.ac.uk

Abstract

Artificial Immune Systems have been used
successfully to build recommender systems
for film databases. In this research, an
attempt is made to extend this idea to web
site recommendation. A collection of more
than 1000 individuals’ web profiles
(alternatively called preferences / favourites /
bookmarks file) will be used. URLs will be
classified using the DMOZ (Directory
Mozilla) database of the Open Directory
Project as our ontology. This will then be
used as the data for the Artificial Immune
Systems rather than the actual addresses. The
first attempt will involve using a simple
classification code number coupled with the
number of pages within that classification
code. However, this implementation does not
make use of the hierarchical tree-like
structure of DMOZ. Consideration will then
be given to the construction of a similarity
measure for web profiles that makes use of
this hierarchical information to build a
better-informed Artificial Immune System.

1 INTRODUCTION
This research is concerned with using Artificial
Immune Systems as a recommender of web sites for
new database members. Thus, a new member of the
database system would be able to export their
bookmark / favourites file and receive a small number
of recommendations of web site addresses (URLs or
Uniform Resource Locators). Unlike a search engine
that will only return specific items a user searches for,
our recommender system should be capable of
providing the user with surprising items of interest.

Artificial Immune Systems are adaptive search
algorithms based on the biological immune system
with the central task of pattern matching between
antigens and antibodies. Thus in our opinion, they are
particularly well suited to data-mining tasks that
involve sifting through large databases and finding
matches to other items. This has been confirmed in
recent research by Cayzer and Aickelin [5] who used
Artificial Immune Systems to recommend films to

new members of a database based on their rating of at
least five films.

As in the research by Cayzer and Aickelin, the type of
Artificial Immune System developed here will be
based on Jerne’s idiotypic network ideas [13]. Hence,
we will build an Artificial Immune System that will
find a group of users in the database who are similar
to the target user in their web site preferences. At the
same time, the idiotypic effects will ensure that this
group is as diverse as possible. Thus, we will have
created an ideal base for predicting and
recommending web sites. To do this successfully two
steps are necessary: building a database that models
individuals’ web profiles using a suitable ontology,
and constructing a suitable measure of how similar
two web profiles are.

The remainder of this paper is organised as follows:
In the next section, a very brief overview of the
immune system is given with particular emphasis on
those features that we intend to exploit here. Section 3
will summarise the research into film prediction and
explain differences and similarities to this piece of
research. The following section describes the data and
ontology used and gives further details about the task
of web site recommendation. Section 5 presents a
description of the intended Artificial Immune System
with an emphasis on the discussion of a suitable
similarity measure. The paper is concluded with a
summary.

2 THE IMMUNE SYSTEM
The human body is protected against foreign invaders
by a multi-layered immune system. The immune
system is composed of physical barriers such as the
skin and respiratory system; physiological barriers
such as destructive enzymes and stomach acids; and
the immune system, which has two complementary
parts, the innate and adaptive immune systems. The
innate immune system is an unchanging mechanism
that detects and destroys certain invading organisms,
whilst the adaptive immune system responds to
previously unmet foreign cells and builds a response
to them that can remain in the body over time.

The immune system is composed of a number of
different agents performing different functions at a
number of different locations in the body. The precise

interaction of these agents is still a topic for debate
[10]. In order to present the important aspects of the
system from a mathematical viewpoint it is necessary
to simplify and present a selective description.

The immune system’s job is to detect antigens, which
are foreign molecules from a bacterium or similar
invader. The innate immune system helps in the
detection process but the main response is through the
adaptive immune system. Two of the most important
cells in this process are white blood cells, called T
cells, and B cells. Both of these originate in the bone
marrow but T cells pass on to the thymus to develop
before, as with B cells, they circulate the body in the
blood and lymphatic vessels.

B cells are responsible for the production and
secretion of antibodies, which are specific proteins
that bind to the antigen. Each B cell can only produce
one particular antibody. The antigen is found on the
surface of the invading organism and the binding of
an antibody to the antigen is a signal to destroy the

invading cell. A diagram from de Castro and Von
Zuben [4] of this process is shown in Figure 1.

Figure 1: Some of the processes involved in the
adaptive immune system.

Whilst there is more than one mechanism at work (see
[8], [10] or [15] for more details), the essential
process for the sake of this research is the matching of
antigen and antibody leading to increased
concentrations of more closely matched antibodies. In
particular, two processes, known as the ‘clonal
selection theory’ by Burnet [3] and the ‘idiotypic
network theory’ by Jerne [13] and [14], are important
to us.

The former can be explained as follows: When an
antibody strongly matches an antigen the
corresponding B cell is stimulated to produce clones
of itself that then produce more antibodies. This
selection of B cells for cloning on the basis of the

antibody match is called the ‘clonal selection
principle’ and will result in increasing concentrations
of that antibody in the body.

However, when the B cells clone themselves they do
not do so exactly, but mutate slightly. Similarly, B
cells may be stimulated when the antibody-antigen
match is not perfect. By allowing mutation, the match
could become better. However, a number of poorer
matches will also be created, and furthermore, some
of the newly produced antibodies could even be
harmful to our own cells. Such cells will die out under
what is known as the ‘negative selection principle’
[10].

The mutation, mentioned above, is quite rapid, often
as much as de Castro and Von Zuben state in [4] “one
mutation per cell division”. This allows a very quick
response to the antigens. This rapid mutation, known
as ‘somatic hypermutation’ [10], may be linked to the
‘fitness’ of the antibody. Hence, those B cells
producing antibodies that are a good match would be
subject to less mutation and vice versa for those that
are not such a good match.

The idiotypic network theory, introduced by Jerne in
[13] and [14], maintains that interactions in the
immune system do not just occur between antibodies
and antigens, but that antibodies may interact with
each other. Hence, an antibody may be matched by
other antibodies, which in turn may be matched by yet
other antibodies. This activation can continue to
spread through the population. However, this
interaction can have positive or negative effects on a
particular antibody-producing cell. The idiotypic
network has been formalised by a number of
theoretical immunologists in [15]. This theory could
help explain how the memory of past infections is
maintained. Furthermore, it could result in the
suppression of similar antibodies thus encouraging
diversity in the antibody pool.

This last possibility was used in the research by
Cayzer and Aickelin [5] in order to preserve diversity.
The Artificial Immune System in their research
produced a pool of users who were similar to the new
entrant to the database, but dissimilar to each other.
Whilst this method produced similar performance in
predicting film ratings to a k-nearest neighbour
approach, the diversity in the pool of recommenders
was found to yield statistically significantly improved
recommendations. Given the sparseness of the web
site search space it may be that suppression of
antibodies on similarity grounds might be
unnecessary. This will be investigated.

There are a number of successful Artificial Immune
System implementations. However, even in the most
complex artificial systems only a fraction of the
functionality of the biological immune system is
exploited. Typically, the antibody-antigen interaction
coupled with somatic hypermutation, form the basis
for many Artificial Immune System applications.
Examples are Timmis et al [18], who used an
Artificial Immune System for clustering multivariate
data, and Hajela and Yoo [11], who combined a
genetic algorithm and an Artificial Immune System to

optimise the design of a 10 bar truss. The research by
Timmis et al also applied the idiotypic network theory
and were successful in both classifying data and
“generalising to cover a larger region of the input
space”. However, the article does not comment on the
effect of modelling a suppression factor between
antibodies. Some of the most promising research to
date has been conducted in the area of computer
security, for instance by Hofmeyr and Forrest in
computer network security [12] and by Kim and
Bentley for fraud detection [15] and [16].

3 ARTIFICIAL IMMUNE SYSTEMS
AS RECOMMENDERS
Whilst most of the applications described above
involve somatic hypermutation, Cayzer and Aickelin
[5] had only identical cloning, not mutation, in their
algorithm. This was because the potential antibodies
were actual users of the film database (EachMovie
database provided by the Compaq Research Centre
[6]). There the task was to find users that were similar
to new entrants to the database. Somatic
hypermutation was not used, since it is not
immediately obvious how to mutate users sensibly
such that these artificial entities still represent
plausible profiles.

For the same reasons, cloning in our intended
Artificial Immune System will make exact copies,
too. Future work might include making inexact copies
to create novel profiles once appropriate rules for
doing so have been established. This could be
particularly beneficial when data gathering is
expensive or data is otherwise sparse, perhaps due to
its sensitive nature, leading to few users being willing
to share their information with others.

The main loop of the recommender algorithm is
shown in Figure 2 below and is the core of our
Artificial Immune System. The aim of this algorithm
is to increase the concentrations of those antibodies
(database users) that are similar to the antigen (target
user). This process is subject to the suppression of
similar antibodies following Jerne’s idiotypic ideas
mentioned above. Thus, over time the Artificial
Immune System contains high concentrations of a
diverse set of users who have similar film preferences
to the target user.

Initialise AIS
Encode user for whom to make predictions as antigen Ag
WHILE (AIS not stabilised) & (More data available) DO

Add next user as an antibody Ab
Calculate matching score between Ab and Ag
Calculate matching scores between Ab and antibodies
WHILE (AIS at full size) & (AIS not stable) DO

Iterate AIS
OD

OD

Figure 2: Main loop of the Artificial Immune
System’s (AIS) algorithm for recommendation.

The diagrams in Figure 3 show the idiotypic effect. In
the top diagram, antibodies Ab1 and Ab3 are very
similar and they would have their concentrations
reduced in the ’Iterate AIS’ stage of the algorithm
above. However, in the lower diagram, the four
antibodies are well separated from each other as well
as being close to the antigen and so would have their
concentrations increased.

Figure 3: Illustration of the idiotypic effect.

At each iteration of the film recommendation
Artificial Immune System the concentration of the
antibodies changes according to the formula given
below. This will increase the concentration of
antibodies that are similar to the antigen and can
allow either the stimulation, suppression, or both, of
antibody-antibody interactions to have an effect on
the antibody concentration. More detailed discussion
of these effects on recommendation problems are
contained within Cayzer and Aickelin’s paper [5].

The following is a formal equation for the idiotypic
effect adapted from Equation 3 in Farmer [8]:

Where:

N is the number of antibodies

Ab2

Ab3

Ab1

Ag

Ab4

Ab1

Ab3

Ab2

Ag

i

N

j
iji

N

j

N

j
jiijjiji

i

xkyxmkxxmkxxmkc

rate

death

recognised

antigens

recognised

amI

recognised

antibodies
c

dt
dx

3
1

2
1 1

10 −







+−=







−














+





−





=

∑∑ ∑
== =

xi is the concentration of antibody i
mi is the antibody i and the antigen correlation
mij is the correlation between antibodies i and j
y is the concentration of the antigen
k1 is suppression, k2 stimulation and k3 death rate
k0 is set to zero in our system, i.e. we do not reward
antibody - antibody recognition.

The algorithm is terminated, when the Artificial
Immune System is said to have stabilised, i.e. if it has
not changed in consistency for more than ten
iterations. The concentrations and correlations of the
users in the final neighbourhood, i.e. final immune
system iteration, are then used to calculate a weighted
sum of the ratings of web sites. This would be either a
specific unseen web site by the target user in order to
predict its ratings, or general top 10 recommendations
of new web sites that the target user might enjoy.

4 THE CHALLENGE OF WEB SITE
RECOMMENDATION
There are a number of algorithms that recommend
items to users. One of the best-known examples is
Amazon.com’s [1] book recommender based on
similar items bought. Generally, these recommenders
use what is termed “collaborative filtering“ or “social
filtering” by Billsus and Pazzani [2]. With the
exponential growth of available information on the
internet, the need for automated techniques to winnow
down the possibilities has also grown but “only a few
different algorithms have been proposed in the
literature thus far” [2].

Many of the current collaborative filtering techniques
use the Pearson correlation coefficient to compare the
item ratings of different users. This suffers from
several limitations. For example, due to the extremely
large amount of information to be rated, two users
may only have a very small number of items in
common causing the correlation measure to be unduly
influenced by those items. Further, there is potentially
no difference between the correlation between two
users with three items in common and the measure for
two users with 30 items in common, in terms of their
“influence on the final prediction” [2].

The sparseness of the information space also implies
that two users might have no items in common. Can
we therefore conclude that they have completely
dissimilar tastes, or does the fact that they have not
rated particular items imply a similar view of the
importance of those items? For these reasons,
alternative approaches to both current collaborative
filtering algorithms and to the use of the Pearson
correlation coefficient should be investigated. More
information about traditional and enhanced
collaborative filtering is provided by Gokhale [9]. The
Artificial Immune System presented here is another
example.

In our problem of web site recommendation, the
original data consists of sets of web site addresses or
URLs taken from bookmark collections such as

http://www.cs.ucl.ac.uk/staff/Kim/ComputerImmune.
It is extremely unlikely that many people will have
many exact addresses in common within their web
profiles. Because of this, it is necessary to transform
or translate the addresses into a different form. To do
this a number of steps are necessary and a widely
used web site classification tree ontology will be used
called DMOZ [7].

Let us look at the issues involved in the classification
of URLs systematically. Typically, an individual web
profile in raw form might consist of a list of
bookmarks as shown in Figure 4 (in this case taken
from the Opera browser – only a small section is
shown).

#URL
NAME=ODP - Open Directory Project
URL=http://dmoz.org/
CREATED=1017158736
VISITED=1023875733

#URL
NAME=Open Directory RDF Dump
URL=http://dmoz.org/rdf.html
CREATED=1017159133
VISITED=1023875759

Figure 4: Part of a raw web profile taken from the
Opera browser.

This data has to be pre-processed in order to remove
unwanted information and superfluous characters.
This also includes removing any categories the user
might have assigned to some of the bookmarks.
Unfortunately, such categorisation of information
cannot be kept, as it is arbitrary and individual to the
person that owns the bookmarks. For instance,
www.bbc.co.uk could be classified under ‘media’ by
one person and under ‘news’ by another. In addition,
misclassifications and duplications might be present
in the raw data. Hence, this filtering typically yields a
file such as the one partially shown in Figure 5.

www.bbc.co.uk/weather/
www.bbc.co.uk/
www.bbc.co.uk/sport/english/football/default.stm
www.guardian.co.uk/
football.guardian.co.uk/

Figure 5: Part processed data with superfluous
information deleted.

As can be seen from the third line in Figure 5, some
of the URLs will have long addresses. Another web
profile might contain a very similar address such as
www.bbc.co.uk/sport/english/football/en/default.stm.
If we were to use the raw addresses within the
Artificial Immune System, these two would be
considered different. However, it is clear that the two
users have bookmarked different pages within the

same part of the same site, i.e. ‘BBC online -
football’, and thus have very similar interests.

Therefore, it is still necessary to process the data
before it can be used. This presents considerable
problems. A program will need to be devised which
will truncate the URLs in such a way so that the two
addresses discussed above would be considered the
same. However, looking again at Figure 4, a simple
truncation of the addresses would lead to the first
three items occupying the same category. At the same
time, it might not lead to the last two being picked
together despite the fact that both the addresses refer
to pages from the same site. Furthermore, it might not
put items 3 and 5 together despite the fact that they
are both concerned with football.

To overcome these difficulties, two strategies are used
within the DMOZ ontology: Normalisation and
reverse partial look-up. First, all URLs undergo a kind
of normalisation when pre-formatting the data, as well
as when doing look-ups. The protocol and host part
are mapped to lowercase characters and host only
URLs are always terminated with a “/”. During the
actual look-up, the category information is gained
from DMOZ by employing a reverse truncation
search. That is, at first, we try to match the full URL,
and then we try to match up to the last “/”, then to the
last but one “/” etc.

For instance, we would first try to match item three
from above by looking for the full URL in DMOZ. If
we cannot find that, we would look for
www.bbc.co.uk/sport/english/football/; if this fails,
we would search for www.bbc.co.uk/sport/english/
etc. Alternatively, we could try to find the closest
match in DMOZ defined by the number of
consecutive characters that are identical counted from
the beginning of the URL.

These normalisation and intelligent matching together
should overcome the first problem mentioned above.
To overcome problems of misclassification and to
have a common standard we decided to use the
DMOZ open directory ontology as a classification
system [7]. Figure 6 shows part of the structure of this
directory.

<Topic r:ID="Top/Arts">
<tag catid="2"/>
<d:Title>Arts</d:Title>
<narrow r:resource="Top/Arts/Books"/>
<narrow r:resource="Top/Arts/Music"/>
<narrow r:resource="Top/Arts/Television"/>
[…]
<Topic r:ID="Top/Kids_and_Teens/Pre-School">
<catid>468769</catid>
<link r:resource="http://www.coolplays.com/"/>
<link r:resource="http://kayleigh.tierranet.com/"/>
<link r:resource="http://www.megafile.com.br/"/>
<ExternalPage about="http://www.coolplays.com/">
<d:Title>Coolplay's Cool for Kids</d:Title>
<d:Description>Includes animated nursery rhymes, crafts,
alphabet and spelling games, and colouring book.

Figure 6: Part of the DMOZ open directory structure.

The first half of Figure 6 shows part of the ‘Arts’
category, which is located immediately below the root
of the tree (called Top). Each category has a unique
identifier number (2 in this case). This category has a
number of sub categories that in turn have several sub
categories of their own. In total, there are some 5
million URLs in 428,590 categories spread over 16
levels in the directory. Categories can also be referred
to using an address showing the parent categories in a
way that preserves the tree structure information. For
example, a category address might read ‘1.3.9’
meaning that it is the ninth sub category of category
3, which is the third sub category of category 1.

The second half of Figure 6 shows how URLs are
represented in DMOZ and gives an example of a
more detailed description of one URL as provided by
an anonymous referee. The complete DMOZ database
is roughly one GB in size and updated regularly. All
specifications in this paper refer to DMOZ as of 1
June 2002. Overall, the version of DMOZ that we use
has the following tree structure with deepest branch
being 16 levels below the top:

 1
 18 /
 621 //
 6675 ///
 30754 ////
 61042 /////
 68901 //////
 101567 ///////
 82802 ////////
 51454 /////////
 20592 //////////
 3467 ///////////
 616 ////////////
 69 /////////////
 8 //////////////
 2 ///////////////
 1 ////////////////

Figure 7: Full DMOZ structural tree.

The final stage of processing the data is to turn each
of the URLs, shown in Figure 7, into a file containing
either the category identification numbers or the
category addresses, coupled with the number of items
in each category. The choice about which version to
use will be discussed in the next section.

There are a number of possible pitfalls with this
process. For example, many profiles will contain a set
of URLs, which are created by the browser program
that they use. Few users are likely to delete all of
these links, reasoning that they may be useful at some
stage. This may create a situation of artificial
similarity between users, which would prevent the
Artificial Immune System from functioning
effectively.

Secondly, the process of placing URLs into categories
is likely to involve some truncation if at first there is
no clear category involved. This could lead to several
subtly different addresses being classified into the

same category due to the truncation look-up.
Depending on whether the truncated sites are from
genuinely different URLs or not this could be good or
bad. In the first case, the category may appear to be
more popular than it should be whereas in the second
case the number in the category is a clear indication
of interest in that category. Until the data is fully
assembled and individual examples are checked, it
will not be possible to judge how critical some of
these problems will be.

5 BUILDING THE ARTIFICIAL
IMMUNE SYSTEM RECOMMENDER
In the film recommender research described in Cayzer
and Aickelin [5], each user was coded as a user
identification number followed by pairs of film
identification numbers with the corresponding rating
of the film. The target user became the antigen, whilst
the current database members were potential
antibodies. In each iteration, antibodies were added to
the Artificial Immune System. Those judged to be
more similar to the antigen in their film ratings had
their concentration increased.

A unique feature of that particular approach was the
application of the idiotypic network theory by Jerne
[13]. This was implemented such that antibodies that
were very similar to each other had their
concentration reduced. This has the effect of creating
a set of users who are similar to the new user but quite
different to each other and thus enhancing the
recommendation accuracy of the system. We intend to
use the same mechanism for our web site
recommender to build an Artificial Immune System
as described in section 3.

In order to do this, we also have to decide on the
encoding of a user’s web profile for which there are
two possibilities. In both cases, a user is encoded as a
list of category IDs and the number of bookmarks
within each category. The difference is in the
category IDs; they can be either an integer or a
reference to the tree structure. To illustrate the
difference, Figure 8 shows the same user’s bookmarks
for both encodings. The figures in bold indicate how
many bookmarks fall into a particular category:

Encoding with the Tree structure:
1.13.12.1.5:5;
1.13.12.1.6:3;
1.16.3.2.11.5:1;
1.18.1.2:1;

Encoding with integer category IDs:
22343:5;
495771:3;
334921:1;
3409:1;

Figure 8: Integer versus Tree Encoding.

If the second encoding is used together with the
number of sites within each category as a rating of the
popularity of that category then the problem becomes
similar to the film recommendation problem.

However, here we have a considerably sparser search
space. In the film database, there were approximately
20,000 entries whereas in the DMOZ directory there
are over 400,000 categories. This sparseness may
prevent the system from working since many users
might have nothing in common, or, at best some
categories that are common to the vast majority of the
data. Furthermore, many users will have only one
entry in a number of categories, leading to increased
similarity since the ‘rating’ of that category will be
the same. These problems may prevent an Artificial
Immune System based on this encoding being
successful in identifying a group of similar users.

There is another problem with using integer category
IDs. Because DMOZ is an evolving classification
system, new categories are added and removed
regularly. This can have the effect that two very
similar categories end up with very different integer
IDs as these are handed out consecutively. For
instance, Star Wars part four might have ID 20,004
when it was classified years ago, but Star Wars part
two might end up with ID 420,012 because it has only
recently entered the DMOZ system. A similar effect
can be seen in Figure 8 for the first two bookmarks.
Figure 8 also shows how the tree structure IDs might
prevent some of these problems as similar categories
still end up near each other in the tree.

The alternative to the integer encoding is to use an
encoding that includes the tree structure in the form of
a category address. What is required then is a
similarity measure that carefully recognises categories
that are ‘close’ within the structure of the tree. For
example, it would need to judge the parent / child or
the sibling relationship as being more similar than a
first cousin or grandparent type relationship.
However, constructing such a measure is far from
simple. Consider the two trees in Figure 9.

Figure 9: Simple tree structure showing two web
profiles.

User 1:

User 2:

C

D E F

G H I J K L

C

D E F

G H I J K L

User 1 has entries at categories G, E, J and L, whilst
user 2 has entries at D, I, J and F. Clearly, matches
should be scored more highly the lower down the tree
they are because this indicates a more precise match.
Additionally, ‘close’ relationships within the tree
structure should count more towards the match than
ones separated by several ‘generations’ (to continue
the family tree metaphor).

Whilst it is easy to see that these users should have
their similarity measure increased, since both have an
entry in category J, a question remains what to do
with J afterwards. Should this match be discarded
once it has been counted by the measure or should the
entries at I and J for user 2 be counted as two entries
at the parent branch (E) for comparison with user 1?
The danger with discarding matches once counted is
that two users might have ‘perfect’ matches for all of
the 10 categories that the first user has in their profile,
whilst the second user has another 100 entries.

However, if one does not discard categories that have
already been matched with another category then it is
possible that one quite high level category might be
‘matched’ with all the different entries at sub-
categories for another user. This might not matter
since the ‘strength’ of the match would have been
reduced by the generational distance and the
weakness of the high-level category’s contribution.

6 SIMILARITY MEASURES
Let us now construct a suitable similarity measure for
the Artificial Immune System that will produce a
value on a 0–1 scale with answers closer to 1
indicating a closer match. Following the discussion in
the previous section, the measure will be built
according to the following five principles.

1. Matching at categories lower down the tree
structure should contribute more to the measure
than matching higher up.

2. Matches at the top level of the tree (i.e. the
‘Top’ category in the DMOZ database should
have a contribution of zero.

3. Matching contribution should be reduced for
‘imperfect matches’ i.e. those not in exactly the
same category. The reduction in contribution
should be proportional to the generational
distance (i.e. a grandparent child relationship has
a generational distance of two.)

4. The matching metric should be scaled
(averaged) so that it ranges from 0 to 1.

5. The matching metric should take into account all
possible matches between the entries in each
web profile, i.e. if there are 10 entries in 1 and
20 in the other then all 10 × 20 = 200 potential
matches should contribute to the measure.

Suppose that we wish to calculate the matching
coefficient for the category addresses 1.3.1.1 and 1.3
in the sample tree diagram in Figure 10 below. We

need to define an ‘edge distance’ as the number of
‘steps’ apart any two addresses are. For example, 1.1
and 1.1.2.2.1 have an edge distance of three, as do
1.2.2.2 and 1.2.1. This equates the relationship
between grandparent and grandchild as the same
strength as that between siblings.

Figure 10: Sample Tree diagram.

By staged truncation of the longer category address
(CA) until they are the same we obtain a match at CA
1.3 with two numbers (edge distances) discarded (but
counted). This match would have a strength
determined by the category level (level 2) of the
matching CA, and by the edge distance (ED).

How should the edge distance affect the value of the
overall match? One possibility would be to use 1 / ED
as this would be a smaller value as the ED increases.
However, this would not work when the CA match
perfectly as we would be dividing by zero. Therefore
using 1 / (ED + 1) is better.

How should the depth of the matching level affect the
value of the overall match? It seems useful to make
the level number the same as the number of integers
in the CA. In the example above, there are six levels.
However, the tree is not of uniform depth. In
principle, matches at lower levels should score higher
since they show a more precise agreement in the topic
matter. However, does this mean that a perfect match
at the bottom of one set of branches (e.g. 1.1.2.2.2)
should score less highly than a perfect match at the
bottom of another lower set, say 1.3.2.2.1.1? The
DMOZ database is a human classification of human
knowledge. To some extent, the classifications are
arbitrary because they are the result of pragmatic as
well as epistemological considerations. Therefore, it
seems incorrect to allow only a perfect match score
when it occurs at the lowest level.

In the example above it might be advisable to allow
perfect matches to contribute fully at levels 4,5 and 6.
Remembering that a match at the top level should
count as zero then a formula to give the level effect
factor would be (L - 1) / (4 - 1) i.e. level 4 would have
a value of 1, level 3 a value of (2/3), level 2 (1/3),
whilst the top level would have a value of zero.
However, this would not work for values of L greater
than 4. To solve this we could use a value of 1 in

1

1.1 1.2 1.3

1.2.1 1.2.2
1.1.2

1.1.1 1.3.1 1.3.2

1.2.1.1
1.2.2.1

1.2.2.2

1.3.1.1 1.3.1.2
1.3.2.1 1.3.2.2

1.3.2.3
1.1.2.3

1.1.2.21.1.2.1
1.1.1.3

1.1.1.21.1.1.1

1.1.2.2.1 1.1.2.2.2 1.2.2.2.1
1.2.2.2.2

1.2.2.2.2.1 1.2.2.2.2.2

1.3.2.2.1

1.3.2.2.1.1

NB All the categories roughly on a line are at the same
level but are shown this way in order to fit in their labels
i.e. 1.1.2.3 is on the same level as 1.2.1.1

those cases. Thus, the general matching formula
becomes min{1, (L-1) / (ML-1)} where ML stands for
the level at which the maximum contribution starts. In
the case of DMOZ, a reasonable choice for the cut-off
point might be level 8 based on the structure in Figure
7.

A disadvantage of the measure just described is the
inherent simplifications of using a cut-off point after
which all matches are equally ‘perfect’. The smaller
the cut-off value, the more inaccurate result will
become. However, if set too large then some branches
of the tree might be too shallow to ever achieve a
perfect match. It is furthermore questionable whether
a linear measure is appropriate. Hence, we propose
the following alternative. The matching scores
monotonically increasing from level 1 to 16 (in
DMOZ’s case) but get close to 1 relatively quickly,
say at level 8, and then approaches 1 asymptotically
as shown in the figure 11.

Figure 11: Shape of proposed matching function.

The following equation describes such a function. Let

webprofile1 contain cai (i = 1...n) category addresses

webprofile2 contain caj (j = 1…m) category addresses

edi,j be the edge distance from cai to caj

li,j be the matching level for cai and caj

Proposed matching function:
240

3233 +−
− ji,

2
ji, ll

This measure still agrees with the principle that
matches at lower levels should score higher but does
not unduly penalise the branches that do not go down
to the full 16 levels. Assuming we sum the
contributions of all the potential matches the total
would have to be divided by the total number of
matches to transform the metric to a 0 - 1 scale.
Hence, the similarity measure s becomes:

mn

240
ll

-
ed

s

n

1i 1j

ji,
2
ji,

ji,

×




















 +−
×

=
∑∑

= =

m 32331

One further factor should be considered when
calculating the match between two web profiles. It is
the validity of the match if the web profiles have very
different numbers of URLs within them (which we
will call the disparity correction factor).

If one web profile has only 10 items whilst the other
has 100, then a match from these two people would
seem to be less valid than one based on web profiles
containing 50 and 60 items. This is because in the
first case the 10 entries from the first profile have
been used proportionately more in calculating the
match. Assuming that web profile 1 (n entries) is
smaller than web profile 2 (m entries) then finding the
fraction n / m would give a higher result to those pairs
of profiles which have similar numbers of entries (see
column 3 in Figure 12).

However, it would also give a perfect score to two
profiles with a very small number of URLs, say 2
URLs each. Clearly, the measure should ‘reward’ web
profiles that have a larger number of entries. One way
to do this would be to include the sum of the number
of entries. However, some profiles contain a very
large number of entries. Analysis of the data shows
that users with more than 100 bookmarks are likely to
be outliers. Hence, in order to produce a measure in a
range from 0 to 1, profiles with more than 100 entries
are counted as though they have 100 entries. Column
4 in Figure 12 shows the calculation of such a
measure under the assumptions above.

The fifth column in Figure 12 contains the proposed
disparity factor. However, if the raw values in column
5 were used the correction effect would probably be
stronger than the original matching score. Therefore a
scaling parameter a is introduced to reduce the range
of the disparity factor. This parameter determines the
lowest value in the range (a, 1) which the disparity
factor can take.

Figure 12: Disparity correction using a disparity
scaling factor of a = 0.6.

n m n/m (n+m)/200 n/m*(n+m)/200 a+(1-a)*n/m*(n+m)/200
100 100 1.00 1.00 1.00 1.00
80 100 0.80 0.90 0.72 0.89
60 100 0.60 0.80 0.48 0.79
40 100 0.40 0.70 0.28 0.71
20 100 0.20 0.60 0.12 0.65
80 80 1.00 0.80 0.80 0.92
60 80 0.75 0.70 0.53 0.81
40 80 0.50 0.60 0.30 0.72
20 80 0.25 0.50 0.13 0.65
60 60 1.00 0.60 0.60 0.84
40 60 0.67 0.50 0.33 0.73
20 60 0.33 0.40 0.13 0.65
40 40 1.00 0.40 0.40 0.76
20 40 0.50 0.30 0.15 0.66
20 20 1.00 0.20 0.20 0.68
10 20 0.50 0.15 0.08 0.63
10 10 1.00 0.10 0.10 0.64
5 100 0.05 0.53 0.03 0.61
1 100 0.01 0.51 0.01 0.60

Using the same notation as before, with a being the
scaling parameter for the disparity correction factor
the final similarity measure becomes:

()
() 





 ++×







+











+×









 +−
×

=

∑ ∑

∑∑

= =

= =

m
m)n(n

a-1a

j vote i vote

j vote i vote
240

ll
-

ed
s

m

1j

n

1i 1j

ji,
2
ji,

ji,

200

32331

1

n

i

m

7 CONCLUSIONS
There are a number of steps in the process of
preparing the database for use in the Artificial
Immune System. These may have an effect on the
performance of the system. It will not be possible to
tell how critical these issues are until the project is
near completion. Having constructed the web profile
database the choice of encoding must be made. Again,
this could have a critical effect on the success of the
Artificial Immune System. It is clear that the
construction of a similarity measure that will allow
the use of the tree structure is not a trivial task. It may
be that this is not necessary and exploration of the
potential of the first encoding will be undertaken first
since there is already a successful precedent in this
case. However, the sparseness of the data set may
prevent this, and the creation of a tree comparison
similarity measure is an interesting challenge.

To conclude, we believe that with the correct
matching metric an idiotypic network based Artificial
Immune System should be well suited to supplying
interesting yet surprising URLs based on a user’s
bookmarks. Preliminary results show that with the aid
of DMOZ we can map between 60% and 80% of
users’ bookmarks to votes for suitable categories. We
feel confident that this gives us a strong basis for an
Artificial Immune System recommender and
subsequent result will be published in due course.

Acknowledgements
The authors would like to thank the many volunteers
donating their bookmarks and David Banks for his
help with the DMOZ system.

References
[1] Amazon.com, http://www.amazon.com.

[2] Billsus, D. and Pazzani, M. (1998). "Learning
Collaborative Information Filters" In Shavlik, J.,
ed., Machine Learning: Proceedings of the
Fifteenth International Conference, Morgan
Kaufmann Publishers, San Francisco, CA.

[3] Burnet, F. M. (1959) The Clonal Selection
Theory of Acquired Immunity. Cambridge
University Press, Cambridge.

[4] De Castro, L. N. & Von Zuben, F. J. (1999),
Artificial Immune Systems: Part I – Basic
Theory and Applications, Technical Report – RT
DCA 01/99, FEEC/UNICAMP, Brazil.

[5] Cayzer, S. & Aickelin, U. (2001). A
recommender system based on the immune
network. Proceedings of CEC 2002.

[6] Compaq Systems Research Centre. EachMovie
collaborative filtering data set, http://
www.research.compaq.com/SRC/eachmovie/.

[7] DMOZ ontology, http://dmoz.org/.

[8] Farmer JD, Packard NH and Perelson AS, The
immune system, adaptation, and machine
learning Physica D, vol. 22, pp. 187-204, 1986.

[9] Gokhale A, Improvements to Collaborative
Filtering Algorithms (1999). Worcester
Polytechnic Institute. http://www.cs.wpi.edu/
~claypool/ms/cf-improve/.

[10] Goldsby R, Kindt T, Osborne B (2000), Kuby
Immunology, Fourth Edition, W H Freeman.

[11] P. Hajela and J. Yoo (1999), Immune Network
Modelling in Design Optimization, New
Methods in Optimisation, Editors: (book-
chapter) D. Corne, M. Dorigo and F. Glover,
McGraw-Hill, pp. 203-216.

[12] Hofmeyr, SA and Forrest, S. (2000).
Architecture for an Artificial Immune System.
Evolutionary Computation 7, pp 45-68.

[13] Jerne NK (1973), Towards a network theory of
the immune system Annals of Immunology, vol.
125, no. C, pp. 373-389.

[14] Jerne, N.K. (1973). The immune system.
Scientific American. 229 pp 52-60.

[15] Kim, J. and Bentley, P. J. (2001), Towards an
Artificial Immune System for Network Intrusion
Detection: An Investigation of Clonal Selection
with a Negative Selection Operator, the
Congress on Evolutionary Computation (CEC-
2001). pp. 1244-1252, 2001.

[16] Kim, J and Bentley, P.J. (2001). An Evaluation
of Negative Selection in an Artificial Immune
System for Network Intrusion Detection.
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001). pp
1330-1337.

[17] Perelson AS and Weisbuch G (1997),
Immunology for physicists Reviews of Modern
Physics, vol. 69, pp. 1219-1267.

[18] Timmis, J., Neal, M. and Hunt, J. (2000), An
Artificial Immune System for Data Analysis.
Biosystems 55 pp 143-150.

Artificial Immune Recognition System (AIRS): Revisions and
Refinements

Andrew Watkins
Computing Laboratory

University of Kent at Canterbury, UK
and

Department of Computer Science
Mississippi State University, USA.

abw5@ukc.ac.uk

 Jon Timmis
Computing Laboratory

University of Kent at Canterbury, UK
J.Timmis@ukc.ac.uk

Abstract
This paper revisits the Artificial Immmune
Recognition System (AIRS) that has been
developed as an immune-inspired supervised
learning algorithm. Certain unnecessary
complications of the original algorithm are
discussed and means of overcomming these
complexities are proposed. Experimental
evidence is presented to support these revisions
which do not sacrifice the accuracy of the
original algorihtm but, rather, maintain accuracy
whilst increasing the simplicity and data
reduction capabilities of AIRS.

1 INTRODUCTION
Recently, there has been a great deal of interest in the use
of the immune system as inspiration for computer science
and engineering. These Artificial Immune Systems (AIS)
seem to have great potential, which is as yet unrealized.
An intuitive application of AIS is in the area of computer
security, network intrusion detection (Forrest, Perelson et
al. 1994), (Hofmeyr and Forrest 2000) and (Kim and
Bentley 2001), change detection, and so on. However,
AIS are not limited to this field alone. Work has identified
that the immune system contains certain properties that
may be useful to create learning algorithms for computer
science through the exploitation of the natural learning
mechanisms contained within the immune system (Bersini
and Varela 1990). However, the focus of current AIS
research seems to have been on the development of
unsupervised learning algorithms (De Castro and Von
Zuben 2000b) and (Timmis and Neal 2001) rather than
the supervised or reinforcement kind. An exception to this
is work in (Carter 2000). Recent work in (Watkins 2001)
explored the possibility of utilizing the immune system as
inspiration for the creation of a supervised learning
technique. By extracting useful metaphors from the
immune system and building on previous immune

inspired unsupervised learning algorithms, a classifier
was constructed that seems to perform reasonably well on
various classification and machine learning problems
(Watkins and Boggess 2002a).
This paper presents a further investigation into the work
of (Watkins 2001) and suggests improvements to the
algorithm that are capable of maintaining classification
accuracy, whilst improving performance in terms of
computational costs and an increase in the data reduction
capabilities of the algorithm. This paper outlines the
previous work undertaken in (Watkins 2001), suggests
improvements to the algorithms and discusses the
implications of these new results. Attention is then given
to future possibilities with this approach.

2 BACKGROUND RESEARCH ON AIRS
AIRS (Artificial Immune Recognition System) is a novel
immune inspired supervised learning algorithm (Watkins
2001). Motivation for this work came from the author’s
identification of the fact that there was a significant lack
of research that explored the use of the immune system
metaphor for supervised learning; indeed, the only work
identified was that of (Carter 2000). However, it was
noted that within the AIS community there had been a
number of investigations on exploiting immune
mechanisms for unsupervised learning (that is, where the
class of data is unknown a-priori) (Timmis, Neal et al.
2000), (Timmis and Neal 2001) and (De Castro and Von
Zuben 2000b). Work in (De Castro and Von Zuben
2000a) examined the role of the clonal selection process
within the immune system (Burnet 1959) and went on to
develop an unsupervised learning known as CLONALG.
This work was extended by employing the metaphor of
the immune network theory (Jerne 1974) and then applied
to data clustering. This led to the development of the
aiNet algorithm (De Castro and Von Zuben 2000b).
Experimentation with the aiNet algorithm revealed that
evolved artificial immune networks, when combined with

mailto:abw5@ukc.ac.uk
mailto:J.Timmis@ukc.ac.uk

traditional statistical analysis tools, were very effective at
extracting interesting and useful clusters from data sets.
aiNet was further extended to multimodal optimization
tasks (De Castro and Timmis 2002b). Other work in
(Timmis, Neal et al. 2000) also utilized the immune
network theory metaphor for unsupervised learning, and
then augmented the work with the development of a
resource limited artificial immune network (Timmis and
Neal 2001), which reported good benchmark results for
cluster extraction and exploration with artificial immune
networks. Indeed, this work has been further extended by
(Nasaroui, Gonzalez et al. 2002) with the introduction of
fuzzy logic and refinement of various calculations. The
work in (Timmis and Neal 2001) was of particular
relevance to (Watkins 2001) and the further work
described in this paper.
Building on this previous work, in particular the ideas of
artificial recognition balls and resource limitation from
(Timmis and Neal 2001) and long-lived memory cells
from (De Castro and Von Zuben 2000b). AIRS
demonstrated itself to be an effective classifier. The rest
of this section describes the immune metaphors that have
been employed within AIRS, outlines the algorithm and
discusses results obtained, before progressing to the
following section, which describes augmentations and
improvements to AIRS.

2.1 IMMUNE PRINCIPLES EMPLOYED
A little time should be taken to draw attention to the most
relevant aspects of immunology that have been utilized as
inspiration for this work. A more detailed overview of the
immune system and its relationship with computer
science and engineering can be found in (De Castro and
Timmis 2002a).
Throughout a person’s lifetime, the body is exposed to a
huge variety of pathogenic (potentially harmful) material.
The immune system contains lymphocyte cells known as
B- and T-cells, each of which has a unique type of
molecular receptor (location in a shape space). Receptors
in this shape space allow for the binding of the pathogenic
material (antigens), with the higher affinity
(complementarity) between the receptor and antigen
indicating a stronger bind. Work in (De Castro and
Timmis 2002a) adopted the term shape-space to describe
the shape of the data being used, and defined a number of
affinity measures, such as Euclidean distance, which can
be used to determine the interaction between elements in
the AIS. Within AIRS (and most AIS techniques) the idea
of antigen/antibody binding is employed and is known as
antigenic presentation. When dealing with learning
algorithms, this is used to implement the idea of matching
between training data (antigens) and potential solutions
(B-Cells). Work in (Timmis and Neal 2001) employed
the idea of an artificial recognition ball (ARB), which was
inspired by work in (Farmer, Packard et al. 1986)
describing antigenic interaction within an immune
network. Simply put, an ARB can be thought to represent
a number of identical B-Cells and is a mechanism

employed to reduce duplication and dictate survival
within the population.
Once the affinity between a B-Cell and an antigen has
been determined, the B-Cell involved transforms into a
plasma cell and experiences clonal expansion. During the
process of clonal expansion, the B-Cell undergoes rapid
proliferation (cloning) in proportion to how well it
matches the antigen. This response is antigen specific.
These clones then go through affinity maturation, where
some undertake somatic hypermutation (mutation here is
inversely proportional to antigenic affinity) and
eventually will go through a selection process through
which a given cell may become a memory cell. These
memory cells are retained to allow for a faster response to
the same, or similar, antigen should the host become re-
infected This faster response rate is known as the
secondary immune response. Within AIRS, the idea of
clonal expansion and affinity maturation are employed to
encourage the generation of potential memory cells.
These memory cells are later used for classification.
Drawing on work from (Timmis and Neal 2001), AIRS
utilized the idea of a stimulation level for an ARB, which,
again, was derived from the equations for an immune
network described in (Farmer, Packard et al. 1986).
Although AIRS was inspired by this work on immune
networks, it was found that maintaining a network
representation—with connections, stimulation, and
repression among the ARBs in the system—was not
necessary for evolving a useful classifier. In AIRS, ARBs
experience a form of clonal expansion after being
presented with training data (analogous to antigens);
details on this process are provided in section 2.2.
However, AIRS did not take into account the affinity
proportional mutation. When new ARBs were created,
they were subjected to a process of random mutation with
a certain probability and were then incorporated into the
memory set of cells should their affinity have met certain
criteria. Within the AIRS system, ARBs competed for
survival based on the idea of a resource limited system
(Timmis and Neal 2001). A predefined number of
resources existed, for which ARBs competed based on
their stimulation level: the higher the stimulation value of
an ARB the more resources it could claim. ARBs that
could not successfully compete for resources were
removed from the system. The term metadynamics of the
immune system refers to the constant changing of the B-
Cell population through cell proliferation and death. This
was present in AIRS with the continual production and
removal of ARBs from the population. Table 1
summarizes the mapping between the immune system and
AIRS.

Table 1: Mapping between the Immune System and AIRS

IMMUNE SYSTEM AIRS
__
Antibody Feature vector
Recognition Ball Combination of feature

vector and vector class
Shape-Space The possible values of the

data vector
Clonal Expansion Reproduction of ARBs that

are well matched with
antigens

Antigens Training data
Affinity Maturation Random mutation of ARB

and removal of lowest
stimulated ARBs

Immune Memory Memory set of mutated
ARBs

Metadynamics Continual removal and
creation of ARBs and
Memory Cells

2.2 THE AIRS ALGORITHM
The previous section outlined the metaphors that were
employed in the development of AIRS. This section now
presents the actual algorithm and discusses the results
obtained from experimentation. A more detailed
description of the algorithm and results can be found in
(Watkins 2001).
Within AIRS, each element (ARB) corresponds to a
vector of n dimensions and a class to which the data
belongs. Additionally, each ARB has an associated
stimulation level as defined in equation 1, where x is
feature vector of the ARB, sx is the stimulation of an ARB
x, y is the training antigen, and affinity, in the current
implementation, is a function that calculates the Euclidean
distance:

(1)

Notionally, AIRS has four stages to learning:
initialization, memory cell identification, resource
competition and finally refinement of established memory
cells. AIRS is a one-shot learning algorithm; therefore,
the process described below is run for each antigenic
pattern, one at a time. Each of these processes will be
outlined with the algorithm summarized below.
Initialization of the system includes data pre-processing
(normalization) and seeding of the system with randomly
chosen data vectors. Assuming a normalized input
training data set (antigens), data from that set are
randomly selected to form the initial ARB population P
and memory cells M. Prior to this selection, an affinity
threshold is calculated; this threshold for the current
implementation is the average Euclidean distance between
each item in the training data set. This is then used to
control the quality of the memory cells maintained as
classifier cells in the system.
AIRS maintains a population of memory cells M for each
class of antigen, which, upon termination of the
algorithm, should have identified suitable memory cells to
provide a generalized representation for each class of
antigenic pattern. The first stage of the algorithm is to
determine the affinity of memory cells to each antigen of
that class. Then the highest affinity cells are selected for
cloning to produce a set of ARBs (which will ultimately
be used to create an established memory set). The number
of clones that are produced is in proportion to the
antigenic affinity, i.e., how well they match; the ARBs
also undergo a random mutation to introduce
diversification.
The next stage is to identify the strongest, based on
affinity to the training instance, ARBs; these will be used
to create the established memory set used for
classification. This is achieved via a resource allocation
mechanism, taken from (Timmis and Neal 2001), where
ARBs are allocated a number of resources based on their
normalized stimulation levels. At this point, it is worth
noting that the stimulation level of an ARB is calculated
not only from the antigenic match, but also the class of
the ARB. This, in effect, provides reinforcement for
ARBs that are of the same class as the antigenic pattern
being learnt and that match the antigenic pattern well, in
addition to providing reinforcement for those that do not
fall into that class and do not match the pattern well.
Once the stimulation of an ARB has been calculated, the
ARB is allowed to produce clones (which undergo
mutation). The termination condition is then tested to
discover if the ARBs are stimulated enough for training to
cease on this antigenic pattern. This is defined by taking
the average stimulation for the ARBs of each class, and if
each of these averages falls above a pre-defined threshold,
training ceases for that pattern. This ARB production is
repeated until the stopping criteria are met. Once the
criteria have been met, then the candidate memory cell
can be selected. ()

()


=

≡ yfossalcxfossalcfi ,yx,ytiniffa-1

esiwrehto,yx,ytiniffa

xs

A candidate memory cell is selected from the set of ARBs
based on its stimulation level and class, with the most
stimulated ARB of the same class as the antigen being
selected as the candidate. If this candidate cell has a
higher stimulation than any memory cell for that class in
the established memory set M, then it is added to M.
Additionally, if the affinity of this candidate memory cell
with the previous best memory cell is below the affinity
threshold, then this established memory cell is removed
from the population and replaced by the newly evolved
memory cell, thus achieving population control.
This process is then repeated for all antigenic patterns.
Once learning has completed, the set of established
memory cells M can be used for classification. The
algorithm is presented below, in terms of immune
processes employed.

1. Initialization: Create a random base called the
memory pool (M) and the ARB pool (P).

2. Antigenic Presentation: for each antigenic
pattern do:
a) Clonal Expansion:
For each element of M determine their affinity to
the antigenic pattern, which resides in the same
class. Select highest affinity memory cell (mc)
and clone mc in proportion to its antigenic
affinity to add to the set of ARBs (P)
b) Affinity Maturation:
Mutate each ARB descendant of this highest
affinity mc. Place each mutated ARB into P.
c) Metadynamics of ARBs:
Process each ARB through the resource
allocation mechanism. This will result in some
ARB death, and ultimately controls the
population. Calculate the average stimulation for
each ARB, and check for termination condition.
d) Clonal Expansion and Affinity Maturation:
Clone and mutate a randomly selected subset of
the ARBs left in P based in proportion to their
stimulation level.
e) Cycle:
While the average stimulation value of each
ARB class group is less than a given stimulation
threshold repeat from step 2.c.
f) Metadynamics of Memory Cells:
Select the highest affinity ARB of the same class
as the antigen from the last antigenic interaction.
If the affinity of this ARB with the antigenic
pattern is better than that of the previously
identified best memory cell mc then add the
candidate (mc-candidate) to memory set M.
Additionally, if the affinity of mc and mc-
candidate is below the affinity threshold, then
remove mc from M.

3. Cycle. Repeat step 2 until all antigenic patterns
have been presented.

2.3 RESULTS AND DISCUSSION
AIRS was tested on a number of benchmark data sets in
order to assess the classification performance. This
section will briefly highlight those results and discuss
potential improvements for the algorithm, more details
can be found in (Watkins and Boggess 2002a).
Once a set of memory cells has been developed, the
resultant cells can be used for classification. This is done
through a k-nearest neighbor approach. Experiments were
undertaken using a simple linearly separable data set,
where classification accuracy of 98% was achieved using
a k-value of 3. This seemed to bode well, and further
experiments were undertaken using the Fisher Iris data
set, Pima diabetes data, Ionosphere data and the Sonar
data set, all obtained from the repository at the University
of California at Irvine (Blake and Merz 1998). Table 2
shows the performance of AIRS on these data sets, a full
comparison table of AIRS and other techniques can be
found in (Watkins and Boggess 2002a).

Table 2: AIRS Classification Results on Benchmark Data

IRIS IONOSPHERE DIABETES SONAR

96.7

94.9

74.1

84.0

These results were obtained from averaging multiple runs
of AIRS, typically consisting of three, or more, runs and
five-way, or greater, cross validation. More specifically,
for the Iris data set a five-fold cross validation scheme
was employed with each result representing an average of
three runs across these five divisions. To remain
comparable to other experiments reported in the literature,
the division between training and test sets of the
Ionosphere data set as detailed in (Blake and Merz 1998)
was maintained. However, the results reported here still
represent an average of three runs. For the Diabetes data
set a ten-fold cross validation scheme was used, again
with each of the 10 testing sets being disjoint from the
others and results were averaged over three runs across
these data sets. Finally, the Sonar data set utilized the
thirteen-way cross validation suggested in the literature
(Blake and Merz 1998) and was averaged over ten runs to
allow for more direct comparisons with other experiments
reported in the literature. During the experimentation, it
was noted by the authors that varying system parameters
such as number of seed cells varied performance on
certain data sets, however, varying system resources (i.e.,
the numbers of resources an ARB could compete for)
seemed to have little affect. A comparison was made
between the performance of AIRS and other benchmark
techniques, where AIRS seemed not to outperform
specialist techniques, but on more general purpose
algorithms, such as C4.5, it did outperform.

Even though initial results from AIRS did look promising,
it can be said there are a number of potential areas for
simplification and improvement. There is clearly a need
to understand exactly why and how AIRS behaves the
way it does. This can be achieved through a rigorous
analysis of the algorithm, examining the behavior of the
ARB pool and memory set over time. To date, the focus
has been primarily on the classification performance of
AIRS. Indeed, the final chapter of (Watkins 2001)
suggests that an investigation into the resource allocation
mechanism would be a useful area of investigation. The
majority of AIS techniques use the metaphor of somatic
hypermutation or affinity proportional mutation. To date,
AIRS does not employ this metaphor but instead uses a
naïve random generation of mutations.
 The remaining sections of this paper undertake these
investigations and present a modified version of AIRS,
which is more efficient in terms of ARB production,
employs affinity proportional mutation and assess what, if
any, difference this has made to the overall algorithm.

3 A MORE EFFICIENT AIRS
Motivated by the observations in (Watkins 2001), current
work has focused on refining AIRS. This section details
the observations that have been made through a thorough
investigation into AIRS and how issues raised through
these observations have been overcome.

3.1 OBSERVATIONS

3.1.1 The ARB Pool
A very crude visualization1 was used to gain a better
understanding of the development of the ARB pool. In
AIRS there are 2 independent pools of cells, the memory
cell pool and the ARB pool. The initial formulation of
AIRS uses the ARB pool to evolve a candidate memory
cell of the same class as the training antigen, which can
potentially enter the memory cell pool. During this
evolution, ARBs of a different class than the training
antigen were also maintained in the ARB pool. The
stimulation of an ARB was based both on affinity to the
antigen and class, where highly stimulated ARBs were
those of the same class as the antigen and that were
“close” to the antigen, or of a different class and "far"
from the antigen. However, the visualization revealed
that during the process of evolving a candidate memory
cell, there seems no need to maintain or evolve ARBs that
are a different class than the training antigen. The point
of the interaction of the ARB pool with the antigenic
material is really only in evolving a good potential
memory cell, and this potential memory cell must be of
the same class as the training antigen. When observing the
visualization for a while, it is possible to notice that there
is a process of convergence by ARBs of the same class to
the training antigen. Naturally, based on the reward

1 See http://www.cs.ukc.ac.uk/people/rpg/abw5/ARB_hundred.html

scheme, ARBs of a different class are moving further
away from the training antigen. However, this process
essentially must start over for the introduction of each
new antigen, and, therefore, previously existing ARBs are
fairly irrelevant. Since there are 2 separate cell pools,
with the true memory of the system only being
maintained in the Memory Cell pool, maintaining any
type of memory in the ARB pool is unnecessary. This
change to the algorithm rather than being about resource
allocation schemes as initially suggested in (Watkins
2001) is really a simplification to the algorithm, which is
seen as a positive step. This simplification affects both
memory usage and computational simplification, although
this will not be discussed in this paper.

3.1.2 Mutation of Cells
Motivated by observing the success of other AIS work, as
well as by some of the tendencies discussed in (Watkins
2001) and (Watkins and Boggess 2002b), attention was
paid to the way in which mutation occured within AIRS.
In these two works, the authors notice that some of the
evolved memory cells do not seem as high-quality of
classifier cells as some of the others. Additionally, it was
observed that there seemed to be some redundancy in the
memory cells that were produced. In (De Castro and Von
Zuben 2000a) and other AIS work, mutation within an
antibody or B-Cell is based on its affinity, with higher
affinity cells being mutated less than lower affinity cells.
These other AIS works have used this method of somatic
hypermutation to a good degree of success. It was thought
that embedding some of this approach in AIRS might
result in higher quality, less redundant, memory cells.
This approach was therefore adopted within AIRS.

3.2 AIRS: WHAT IS NEW?
For the remainder of this section changes that have been
made to the AIRS algorithm are described. There then
follows empirical results from the new formulation and
discuss the implications of these results.

3.2.1 Memory Cell Evolution
In the newly formulated version of AIRS, candidate
memory cell evolution is based only on ARBs of the same
class as the training antigen. This means that ARBs in the
ARB pool are no longer permitted to mutate class.
Therefore, the ARB pool will only consist of ARBs that
are of the same class as the training antigen. At the end of
each antigenic presentation cycle, the pool can be either
be cleared out, or the ARBs can stay in the pool. If the
pool is not cleared out then it will contain ARBs of all
potential classes. The algorithm is only reinforcing the
class of the antigenic pattern, and therefore, all ARBs that
are in the pool at the end of the antigenic cycle that are
not of the same class as the antigenic pattern will be
removed through the metadynamic process, as they are no
longer rewarded with any resources. This is in contrast
to the original formulation of AIRS in which the

allocation of resources, and thus cellular reinforcement,
was based on a stimulation value that was calculated as in
Equation 1 (section 2.2). In that original version both
ARBs “near” the antigen and of the same class as the
antigen were rewarded and ARBS “far” from the antigen
and of a different class than the antigen were rewarded.
Also, ARBs were allowed to mutate their class values
(mutate in this case means switching classes). In the
newly proposed version of AIRS, only ARBs of the same
class are rewarded and mutation of the class value is no
longer permitted.
Based on this new formulation, the only user parameter
changes that might need to be made is that the stimulation
threshold could potentially need to be raised. Recall, that
the stimulation threshold was used as a stopping criterion
for training the ARB pool on an antigen. In order to stop
training on an antigen the average normalized stimulation
level had to exceed the stimulation threshold for each
class group of ARBs. That is, in a 2-class problem, for
example, the average normalized stimulation level of all
class 0 ARBs had to be above the stimulation threshold,
and the average normalized stimulation level of all class 1
ARBs has to be above the stimulation threshold. It was
possible, and frequently the case in fact, that the average
normalized stimulation level for the ARBs of the same
class as the training antigen reached the stimulation
threshold before the average normalized stimulation level
of ARBs in different classes from the antigen. What this
did, in effect, was allow for the evolution of even higher
stimulated ARBs of the same class while they were
waiting for the other classes to reach the stimulation
threshold. By taking out these extra cycles of evolution
through no longer worrying with ARBs of different
classes, it is possible that the ARBs will not have
converged "as much" as in the previous formulation. This
can be overcome by raising the stimulation threshold and
thus requiring a greater level of convergence.

3.2.2 Somatic Hypermutation
To explore the role of mutation on the quality of the
memory cells evolved, the mutation routine was modified
so that the amount of mutation allowed by a given gene in
a given cell is dictated by its stimulation value.
Specifically, the higher the normalized stimulation value,
the smaller the range of mutation allowed. Essentially,
the range of mutation for a given gene = 1.0 - the
normalized stimulation value of the cell. Mutation is then
controlled over this range with the original gene value
being placed at the center of the range. This, in a sense,
allows for tight exploration of the space around high
quality cells, but allows lower quality cells more freedom
to explore widely. In this way, both local refinement and
diversification through exploration are achieved.

3.3 THE AIRS V2 ALGORITHM
The changes made to the AIRS algorithm are small, but
end up having an interesting impact on both the simplicity
of implementation and on the quality of results. Section 4

will offer more discussion by way of comparison. For
now, the changes to the original AIRS presented in
section 2.2 will be discussed. These can be identified as
follows:

1. Only the Memory Cell pool is seeded during
initialization rather than both the MC pool (M)
and the ARB pool (P). Since we are no longer
concerned about maintaining memory or class
diversity within P it is no longer necessary to
initialize P from the training data or from
examples of multiple classes.

2. During the clonal expansion from the matching
memory cell used to populate P, the newly
created ARBs are no longer allowed to mutate
class. Again, maintaining class diversity in P is
not necessary.

3. Resources are only allocated to ARBs of the
same class as the antigen and are allocated in
proportion to the inverse of an ARB’s affinity to
the antigen.

4. During affinity maturation (mutation), a cell’s
stimulation level is taken into account. Each
individual gene is only allowed to change over a
finite range. This range is centered with the
gene’s pre-mutation value and has a width the
size of the difference of 1.0 and the cell’s
stimulation value. In this way the mutated
offspring of highly stimulated cells (those whose
stimulation value is closer to 1.0) are only
allowed to explore a very tight neighborhood
around the original cell, while less stimulated
cells are allowed a wider range of exploration.
(It should be noted that during initialization all
gene values are normalized so that the Euclidean
distance between any two cells is always within
one. During this normalization, the values to
transform a given gene to within the range of 0
and 1 are discovered, as well. This allows for
this new mutation routine to take place in a
normalized space where each gene is in the
range of 0 and 1.)

5. The training stopping criterion no longer takes
into account the stimulation value of ARBs in
all classes, but now only accounts for the
stimulation value of the ARBs of the same class
as the antigen. In the new formulation of AIRS
it is still possible to have ARBs in P of different
classes if the implementation does not clear the
ARB pool after each antigenic pattern.
However, this will not affect the stopping
criterion since the changes to the algorithm now
only require that the average stimulation value
of the ARBs of the same class as the antigen be
above the user-supplied stimulation threshold.

3.4 RESULTS AND DISCUSSION
To allow for comparison between the two versions of the
algorithm, the same experiments were performed on the
new formulation of AIRS (AIRS2). Section 4 will
provide a more thorough comparative discussion, but for
now, results of AIRS2 on the four, previously discussed,
benchmark sets are presented in Table 3.

Table 3: AIRS2 Classification Results on Benchmark
Data

IRIS IONOSPHERE DIABETES SONAR

96.0

95.6

74.2

84.9

These results were obtained by following the same
methodology as the original results reported in section 2.3
which is elaborated upon in (Watkins 2001) and (Watkins
and Boggess 2002a). Again, we note that these results are
competitive with other classification techniques discussed
in the literature, such as C4.5, CART, and Multi-Layer
Perceptrons.

4 COMPARATIVE ANALYSIS
This section briefly touches on some comparisons
between the original version of AIRS presented in
discussed in section 2 (AIRS1) and the revisions to this
algorithm presented in section 3 (AIRS2). The focus of
this discussion will be on two of the more important
features of the AIRS algorithms: classification accuracy
and data reduction.

4.1 CLASSIFICATION ACCURACY
The success of AIRS1 as a classifier (cf, (Watkins and
Boggess 2002a)) makes it important to assess any
potential changes to the algorithm in light of test set
classification accuracy. To aid in this task, Table 4
presents the best average test set accuracies, along with
the standard deviations, achieved by both versions of
AIRS on the four benchmark data sets.

Table 4: Comparative Average Test Set Accuracies

 AIRS1:
Accuracy

AIRS2:
Accuracy

Iris 96.7 (3.1) 96.0 (1.9)

Ionosphere 94.9 (0.8) 95.6 (1.7)

Diabetes 74.1 (4.4) 74.2 (4.4)

Sonar 84.0 (9.6) 84.9 (9.1)

It can be noted that the revisions to AIRS presented in
section 3 do not require a sacrifice in classification
performance of the system. In fact, for 3 of the 4 data sets

we see a slight improvement in the accuracy; however,
these differences are not statistically significant. What is
important to note is that the changes introduce no
fundamental differences in classification accuracy of the
system.

4.2 DATA REDUCTION
From the previous subsection it can be seen that the
changes introduced to AIRS offer no real difference in
classification accuracy, so the question arises: why
bother? Why introduce these changes to a perfectly
reasonably performing classification algorithm? The
answer lies in the data reduction capabilities of AIRS.
In (Watkins 2001) and (Watkins and Boggess 2002b), the
authors discuss that aside from competitive accuracies
another intriguing feature of the AIRS classification
system is its ability to reduce the number of data points
needed to characterize a given class of data from the
original training data to the evolved set of memory cells.
Given the volumes of data involved with many real-world
data sets of interest, any technique that can reduce this
volume while retaining the salient features of the data set
is useful. Additionally, it is this collection of memory
cells that are the primary classifying agents in the evolved
system. Since classification is, currently, performed in a
k-nearest neighbor approach, whose classification time is
dependent upon the number of data points used for
classifying a previously unseen data item, any reduction
in the overall number of evolved memory cells is also
useful for the algorithm.
Table 5 presents the average size of the evolved set of
memory cells and the amount of data reduction this
represents in terms of population size and percentage
reduction, along with standard deviations, for each
version of the algorithm on the four benchmark data sets.
The original training set size is also presented for
comparison. There are two points of interest:

1. Both versions of the algorithm exhibit data
reduction, and

2. AIRS2 tends to exhibit greater data reduction
than AIRS1.

Table 5: Comparison of the Average Size of the Evolved
Memory Cell Pool

 Training
Set Size

AIRS1:
Memory
Cells

AIRS2:
Memory
Cells

Iris 120 42.1/65%
(3.0)

30.9/74%
(4.1)

Ionosphere 200 140.7/30%
(8.1)

96.3/52%
(5.5)

Diabetes 691 470.4/32%
(9.1)

273.4/60%
(20.0)

Sonar 192 144.6/25%
(3 7)

177.7/7%
(4 5)

(3.7) (4.5)

This second point is the more important for our current
discussion. As mentioned in sections 3.1.2 and 3.2.2, one
of the goals of the revision of the AIRS algorithm was to
see if employing somatic hypermutation through a
method more in keeping with other research in the AIS
field would increase the efficiency of the algorithm. The
current measure of efficiency under concern is the amount
of data needed to represent the original training set to
achieve accurate classifications. We can see from Table 5
that, in general, AIRS2 was able to achieve the
comparable accuracy presented in section 4.1 with greater
efficiency. In fact for some of the data sets, most notably
Ionosphere and Diabetes, the degree of data reduction is
greatly increased (from 30% to 52% for Ionosphere data
and from 32% to 60% for the diabetes data set).
Interestingly, for the most difficult classification task, the
Sonar data set, the degree of data reduction is not
increased. While this was not the general trend on this
data set (data not presented), it does possibly point to
some limitations in the current version of AIRS. Overall,
however, it seems reasonable to claim that the revisions to
AIRS provide greater data reduction, and hence greater
efficiency, without sacrificing accuracy.

4.3 A WORD ABOUT SIMPLICITY
While the focus has not been on algorithmic complexity
analysis of the two versions of AIRS for this current
paper, it would be remiss not to make a brief mention
concerning the simplifying effects of the revision to
AIRS. As mentioned in section 3.1, the reformulation of
AIRS was chiefly motivated by some basic observations
about the workings of the system. One observation was
that the original version of AIRS maintained
representation of too many cells for its required task.
This led to the elimination of maintaining multiple classes
of cells in the ARB pool or of retaining cells in the ARB
pool at all. This has the simplifying effect of reducing the
memory necessary to run the system successfully. A
second observation concerning the quality of the evolved
memory cells led to the investigation of the mutation
mechanisms employed in the original algorithm. By
adopting an approach to mutation proven to be successful
in other AIS, it has been possible to increase the quality of
the evolved memory cells that is evidenced by the
increased data reduction without a decrease in
classification accuracy. Both of these overarching
changes (ARB pool representation and the mutation
mechanisms used) have exhibited a simplifying effect on
the classification system as a whole.

5 CONCLUSIONS AND FUTURE WORK
This paper has focused on a supervised learning system
based on immunological principles. The Artificial
Immune Recognition System (AIRS) introduced in
(Watkins 2001) exhibited initial success as a classification

algorithm. However, as with any initial system, there
were some revisions and refinements that could be made
to AIRS that would decrease the complexity of the
system. This paper has presented investigations for two
of these revisions.
It was shown that the internal data representation of the
original version of AIRS was overcomplicated. By
simplifying the evolutionary process, it was possible to
decrease this complexity whilst still maintaining
accuracy. It was also shown that the use of affinity aware
mechanisms of somatic hypermutation, as adopted
throughout the AIS community, led to higher quality
memory cells in AIRS and thus greater data reduction and
faster classification of test data items.
Both of these revisions were the result of careful
observation of the behavior of the original algorithm. In
this respect, it can be said that this paper is also about the
importance of taking the steps to investigate the behavior
of a system even if it is performing in a successful
manner. This paper has demonstrated that such an
investigation is fruitful in simplifying the workings
without sacrificing the performance of the system.
There are many avenues that can be explored with this
work. One is the analogy of this work with reinforcement
learning strategies, it could possibly be argued that AIRS
is a reinforcement learning algorithm, when one considers
certain mechanism within the immune system (Bersini
and Varela 1994); this warrants further investigation.
Additionally, the role of parallel and distributed
processing could be examined, in order to allow for
dealing with larger scale problems. Work has already
begun on applying AIRS to immunological data,
attempting to predict the binding of receptors and in effect
trying to solve an immunological problem with an
artificial immune system.

References
Bersini, H. and F. J. Varela (1990). Hints for Adaptive
Problem Solving Gleaned from Immune Networks.
Parallel Problem Solving from Nature. pp.343-355
Bersini, H. and F. J. Varela (1994). The Immune Learning
Mechanisms: Reinforcement, Recruitment and their
Applications. Computing with Biological Metaphors. R.
Paton, Chapman and Hall: 166-192.
Blake, C. L. and C. J. Merz (1998). UCI Repository of
machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html
Burnet, F. M. (1959). The Clonal Selection Theory of
Immunity, Vanderbilt University Press, Nashville, TN.
Carter, J. H. (2000). "The Immune System as a model for
Pattern Recognition and Classification." Journal of the
American medical Informatics Association 7(1).
De Castro, L. N. and J. Timmis (2002b). "An Artificial
Immune Network for Multimodal Optimisation."
Congress on Evolutionary Computation. Part of the
World Congress on Computational Intelligence: 699-704.

De Castro, L. N. and J. I. Timmis (2002a). Artificial
Immune Systems: A New Computational Intelligence
Approach, Springer-Verlag.
De Castro, L. N. and F. Von Zuben (2000a). "The clonal
selection algorithm with engineering applications."
Proceedings of Genetic and Evolutionary Computation
Conference: 36-37.
De Castro, L. N. and F. Von Zuben (2000b). "An
Evolutionary Immune Network for Data Clustering."
SBRN '00 1: 84-89.
Farmer, J. D., N. H. Packard, et al. (1986). "The Immune
System, Adaptation, and Machine Learning." Physica
22(D): 187-204.
Forrest, S., A. Perelson, et al. (1994). "Self-Nonself
Discrimination in a Computer." Symposium on Research
in Security and Privacy: 202-212.
Hofmeyr, S. and S. Forrest (2000). "Architecture for an
Artificial Immune System." Evolutionary Computation
7(1): 45-68.
Jerne, N. K. (1974). "Towards a Network Theory of the
Immune System." Annals of Immunology 125C: 373-389.
Kim, J. and P. Bentley (2001). "Towards an Artificial
Immune System for Network Intrusion Detection: An
Investigation of Clonal Selection with Negative Selection
Operator." Congress on Evolutionary Computation: 1244-
1252.
Nasaroui, O., F. Gonzalez, et al. (2002). "The Fuzzy
Artificial Immune System: Motivations, Basic Concepts
and Application to Clustering and Web Profiling."
International Joint Conference on Fuzzy Systems: 711-
717.
Timmis, J. and M. Neal (2001). "A resource limited
artificial immune system for data analysis." Knowledge
Based Systems 14(3-4): 121-130.
Timmis, J., M. Neal, et al. (2000). "An Artificial Immune
System for Data Analysis." BioSystems 55(1/3): 143-150.
Watkins, A. (2001). AIRS: A resource limited artificial
immune classifier. Department of Computer Science,
Mississippi State University.
http://nt.library.msstate.edu/etd/show.asp?etd=etd-
11052001-102048
Watkins, A. and L. Boggess (2002a). "A new classifier
based on resource limited artificial immune systems."
Proceedings of Congress on Evolutionary Computation.
Part of the World Congress on Computational
Intelligence.: 1546-1551.
Watkins, A. and L. Boggess (2002b). "A resource limited
artificial immune classifier." Proceedings of Congress on
Evolutionary Computation. Part of the World Congress
on Computational Intelligence: 926-931.

A Model of Gene Library Evolution in the Dynamic Cl onal Selection
Algorithm

J. Kim

Department of Computer Science
King’s College London

Strand
London WC2R 2LS

jungwon@dcs.kcl.ac.uk

P. J. Bentley

Department of Computer Science
University College London

Gower Street
London WC1E 6BT

P.Bentley@cs.ucl.ac.uk

Abstract

The dynamic clonal selection algorithm
(dynamiCS) was created to tackle the difficulties
of anomaly detection in continuously changing
environments (Kim and Bentley, 2002a). This
algorithm was extended in a sister paper (Kim
and Bentley, 2002b), so that memory detectors
that are no longer valid are automatically
deleted. Here we describe a further extension to
the system: the use of hypermutation on deleted
memory detectors to produce, in effect, a “virtual
gene library” which seeds the immature detector
population.

1 INTRODUCTION

When using an Artificial Immune System (AIS) in a real
environment (e.g., monitoring network traffic), normal or
self behaviours can change after a certain period. In
addition, the system may only see a small subset of self
antigens at any one time. In order for our AIS to be able
to deal with such an environment, a dynamic clonal
selection algorithm (DynamiCS) was introduced in
previous work (Kim and Bentley, 2002a). The results
described there showed that DynamiCS could
incrementally learn the globally converged distributions
even though only one subset distribution was given at
each generation. This feature was achieved by employing
three important parameters: tolerisation period of an
immature detector (T), activation threshold of a mature
detector (A) and the life span of a mature detector.
However, the original DynamiCS could not learn new
self-antigens when learned self and non-self behaviours
suddenly altered due to legal self change. This resulted in
high false positive (FP) rates when new antigens were
monitored by DynamiCS, although it produced high true
positive (TP) rates.

A sister paper to this describes a further extension of
DynamiCS, which reduces FP rates increased by memory
detectors (Kim and Bentley 2002b). The extended
DynamiCS handles generated memory detectors based on
their detection results. The original DynamiCS preserved
memory detectors for an infinite lifespan. In contrast, the
extended DynamiCS kills memory detectors if they show

poor self-tolerance to new antigens (Kim and Bentley
2002b). This extended system was tested to determine
whether surviving memory detectors no longer cause
seriously high FP error rates or not. From this test, it was
analysed to see whether any other problems occur as a
consequence of killing memory detectors. The analysis
showed that the extended DynamiCS requires a larger
amount of co-stimulation if it yielded high TP rates.

This analysis led to the work described in this paper: the
addition of hypermutation to the extended DynamiCS, to
– in effect – evolve a gene library of the AIS. This
additional extension is designed to fine-tune generated
memory detectors so that the system obtains higher TP
rates without increasing the amount of co-stimulation.
Here, the new extension is tested to determine whether it
gains high TP rates without increasing the amount of co-
stimulation as the result of gene library evolution. The test
results are then analysed to see how hypermutation leads
to such a gene library evolution effect, and thus whether it
improves the overall system performance. Finally, the
novel features of DynamiCS studied in this work are
discussed in accordance with a comparison to the most
similar AIS developed by (Hofmeyr, 1999; Hofmeyr and
Forest, 2000).

2 DYNAMIC CLONAL SELECTION
(DynamiCS) ALGORITHM

The new AIS introduced in previous work (Kim and
Bentley, 2002a) follows the basic concept of the AIS
proposed by Hofmeyr (1999). The adaptability of
Hofmeyr’s AIS was achieved via co-ordinated dynamics
of three different detector populations: immature, mature,
and memory detector populations. In order to fully
comprehend the co-ordinated dynamics of these three
detector populations in terms of AIS adaptability, we
introduced an artificial immune algorithm, called the
dynamic clonal selection algorithm (DynamiCS).
Although Hofmeyr proposed various new features in
order to effect great adaptability and distributed detection,
DynamiCS attempts to distill only the crucial components
that yield adaptability to the system (and reduce the
number of system parameters to ensure the algorithm is
usable). The following pseudo code provides an overview
of the extended DynamiCS.

Initialise Dynamic Clonal Selection Algorithm
Create an initial immature detector population with random detectors;

Generation_Number = 1;
Do
{ If (Generation_Number = N) then Select a new antigen cluster.
 Select 80% of self and non-self antigens from chosen antigen cluster;

 Reset Parameters
 Generation_Number++; Memory Detector Age++;
 Mature Detector Age++; Immature Detector Age++;

 Monitor Antigens
 { Monitor Antigens by Memory Detectors
 Co-stimulation: does the memory detector detect a non-self
 antigen or does it detect a self antigen?
 Kill memory detectors that detect self antigens.

 Monitor Antigens by Mature Detectors
 Check whether any mature detector detects any non-self antigen;
 Check whether any mature detector detects any self antigen;
 Create new memory detectors;
 Old mature detectors are killed;

 Monitor Antigens by Immature Detectors
 Check whether any immature detector detects any self antigen;
 Delete any immature detector matching any self antigen;
 Create new mature detectors;
 }

 If (immature detector population size +
 mature detector population size
 < non-memory detector pop size)
 { Do
 { Generate a random detector;
 Add a random detector to an immature detector population;
 } Until (immature detector population size +
 mature detector population size =
 non-memory detector pop size);
 }
} While (generation Number < max Generation)

Full details of this algorithm are given in (Kim and
Bentley, 2002a and b).

All experiments used the Wisconsin breast cancer data
set. The cancer data has two classes, ‘Malignant’ and
‘Benign’. The system treated ‘Malignant’ as non-self and
‘Benign’ as self. In order to be sure of providing antigens
of novel distributions, self and non-self antigen data was
clustered into several groups: the 240 ‘Malignant’
examples were divided into three clusters of 45, 117 and
78 examples, and the 460 ‘Benign’ examples were
grouped into three clusters of 42, 355 and 63 examples.
The Expectation Maximization (EM) clustering algorithm
was applied to cluster antigen data. The EM algorithm is
widely-used as the basis for various unsupervised learning
algorithms (Mitchell, 1997). 80% of the self and non-self
antigen data belonging to each cluster were randomly
selected for N generations. Therefore, DynamiCS was
provided with different antigen data at each generation
and the distributions of these data changed at every N
generations. The costimulation mechanism involving a
security officer was implemented by simply increasing
the match count only when a detector detects non-self
antigens.

3 BACKGROUND: GENE LIBRARY
EVOLUTION AND HYPERMUTATION

A problem found in previous experimental results is that
the extended DynamiCS required a large number of
memory detector co-stimulations in order to obtain
satisfactory TP rates (Kim and Bentley 2002b). This
problem could originate from the simplification of the
developed AIS, which did not adopt all the evolution
processes engaged in the human immune system. So far
negative selection and clonal selection have already been
employed in DynamiCS and their effects were analysed.
However, gene library evolution has not yet been adopted
in DynamiCS.

The analyses of previous experimental results explained
that the extended DynamiCS with high activation
threshold of a mature detector (A) provided a smaller
number of memory detectors and thus it required less
involvement from human security officers. However, it
missed a larger number of non-self antigens. In addition,
they have shown that the generation of more memory
detectors by decreasing the A can increase TP rates. This
was mainly because all the new detectors were generated
randomly and thus generated detectors were randomly
scattered in the non-self antigen space. In other words,
although existing memory detectors detected a sufficient
number of non-self antigens to activate, they can be
further finely tuned to match more non-self antigens.

If new detectors are generated by taking some feedback
from previous detection results into account, then a new
detector can be improved to match a larger number of
non-self antigens. This idea can be implemented by a
model of gene library evolution using hypermutation, as
will be described later. Bearing in mind the effect of gene
library evolution, this section addresses how the human
immune system evolves over generations, and how
existing AIS’s adopt these mechanisms.

3.1 GENE LIBRARY EVOLUTION BY HUMAN
IMMUNE SYSTEMS

The human immune system learns dynamically changing
antigens via clonal selection. To be more precise,
activating antibodies clone themselves and proliferate
across different parts of the body. Cloning antibodies
trigger a somatic hypermutation process. Somatic
hypermuatation mutates a random portion of genes in
antibody clones. Mutated offspring of activating
antibodies are expected to have wider variations in their
antigen-matching genes. Mutants are quickly
disseminated across the body and start detecting other
types of antibodies. During this process, mutants and
existing antibodies compete to detect more antigens and
their antigen detection results determine their affinities.
The antibodies with higher affinities survive longer and
clone themselves more. It is known that clonal selection
with hypermutation is essential for the human immune
system to permanently learn newly appearing antigens
(Paul, 1993; Sompayrac, 1999).

Somatic hypermutation mechanism is distinguished from
mutation taking place in a germ line level1. While a germ
line level of mutation occurs typically at a low rate,
mutation applied on activating antibody clones operates at
a much higher rate. Another different feature of somatic
hypermutation is that it is applied only on a somatic level.
It is known that the mutated genes of antibody clones
cannot be directly written back to the DNA (or a gene
library) of an egg or sperm cell. As a result, the genes of
surviving antibody mutants are not passed onto the next
generation of the immune system (Paul, 1993;
Sompayrac, 1999).

However, it is also known that the learning results via
clonal selection with hypermutation during a lifetime
indirectly lead the evolution of a gene library in the
human immune system over generations. Although the
genes of useful antibody mutants are not directly
inherited, individuals capable of generating more useful
mutants are more likely to survive against various types
of pathogens. Thus, the gene libraries of these individuals
are passed over generations and offspring having these
inherited gene libraries are more likely to have an
immune system with a good capability of producing
useful mutants. This effect was proposed for the first time
by Mark Baldwin in 1896 and named as the Baldwin
effect (Baldwin, 1896).

While it has been reported that the learning of the human
immune system during a lifetime indirectly determines
the direction of gene library evolution (Hightower et al.,
1996; Perelson et al., 1996), other work by Hightower et
al. (1995) investigated what determines the direction of
gene library evolution (i.e. where the selection pressure of
gene library evolution is aimed). This question is about
what the evolution strategy of the human immune system
is when the goal is that a dynamically changing vast
number of antigens should be covered by a much smaller
number of antibodies. This work showed that the binary
antibodies of AIS evolve toward a balancing point
between maximum coverage of the antigen space and the
least overlapping coverage of antibody space.

Oprea and Forrest (1998; 1999) advanced further the
work by Hightower et al. (1995) and studied the diversity
required of a gene library in the human immune system,
and the role of gene library evolution. This work verified
that antibody evolution gets slower and evolves to cover
more random antigen niches when the pathogen size
(exposed to antibodies) gets smaller. In this case, the
immune system does not let the gene library evolve
toward existing antigen specific niches. Instead, it evolves
toward covering a coarse-grained antigen space. This
understanding was drawn from the observation that the
survival probability of the organism (the average fitness
of immune systems) increased logarithmically with the
size of its germ line-encoded antibody repertoire (the

1 Germ line manipulation requires the altering of the DNA in the
reproductive cells which make the fertilized egg, so that the genetic
changes will be copied into every cell of the future adult, including his
or her reproductive cells.

number of antibody genes in the library). This result
clearly illustrated that the gene library diversity is not
maintained for specific recognition of individual
pathogens, but rather it evolved to cover a coarse-gain
encoding of the regions of the pathogen universe that the
species has encountered. A later study by the same author
(Oprea, 1999b) investigated the role of hypermutation by
investigating its mutating targets. Her experiments
showed that hypermutation usually targets to mutate the
antigen-binding regions of a gene library and the mutation
results often led fine-tuning of antigen-binding parts.

In summary, the gene library evolves by getting indirect
feedback from what the human immune system has
learned during its lifetime. Germ line diversity that is
obtained through gene library evolution is somewhat
directed toward covering a coarse-grain antigen space,
and learning through hypermuation leads the immune
system to fine-tune its detection of the existing antigens.

3.2 GENE LIBRARY EVOLUTION BY
ARTIFICIAL IMMUNE SYSTEMS

There are two methods employed by the currently
available AIS’s in order to evolve their gene libraries. The
first approach directs gene library evolution through the
Baldwin effect and the second approach allows provision
of direct feedback from learning results to a gene library.
The first approach initially builds a gene library that is a
collection of previously known antibody genes. This
initial gene library provides a certain degree of antigen
diversity but it obtains a satisfactory level of antigen
diversity through gene expression and learning using
hypermutation. Although this approach does not directly
alter the genes in the gene library, it still allows the gene
library to evolve via the Baldwin effect. The second
approach often does not distinguish a gene library from an
antibody population. It treats a currently existing antibody
population as a gene library and thus concentrates on
antibody population evolution. As the result, this
approach ignores the difference between lifetime learning
and evolution over generations, but it emphasises more
the study of whether hypermutation accelerates the degree
of antibody population evolution, and controls the
evolution direction. These two different approaches have
been implemented in various ways depending on the
adopted AIS model.

One popular group of AIS is the extension of a
conventional genetic algorithm. Researchers added
several immune features to GA in order to complement
some weaknesses found from a conventional GA
(Dasgupta et al., 1999a; Hart and Ross, 1999; Gaspar and
Collard, 1999; Hajela and Yoo, 1999; Potter and De Jong,
1998; Nikolaev et al., 1999; Michaud et al., 2001). The
static clonal selection algorithm introduced in previous
work (Kim and Bentley, 2001) belongs to this group.
Among these systems, (Hart and Ross, 1999) and
(Michaud et al., 2001) used a gene library that is separate
from the antibody population. The gene libraries used in
these work are collections of some partial solutions and

thus new antibody solutions were generated by
concatenating these partial solutions. While Hart and Ross
(1999) generated new antibodies using this method
exclusively (Michaud et al., 2001) generated only the
initial antibody population using a gene library and the
antibody population was evolved using a conventional
GA. However, neither investigated whether these
approaches have additional benefits compared with others
that did not differentiate the antibody population from the
gene library. These other methods typically generated
new antibodies using crossover and mutation operators of
GA and antibodies in the population were continuously
replaced with evolved new ones (Dasgupta et al., 1999a;
Gaspar and Collard, 1999; Hajela and Yoo, 1999; Potter
and De Jong, 1998; Nikolaev et al., 1999). From these
latter approaches, apart from (Gaspar and Collard, 1999),
none of these systems employed hypermutation, which
might provide fine-tuned diversity of the antibody
population that can cover currently existing antigens. The
AIS developed in (Gaspar and Collard, 1999) cloned the
best n % of antibodies and mutated them with a high rate.
From these mutated antibodies, only ones having
improved fitness values were entered to the antibody
population for selection. They did not study the effect of
hypermutation in terms of antibody evolution.

Another popular type of AIS, which use network theory,
usually apply a mutation operator to n % of best
antibodies in an antibody network, and mutated antibodies
are tested whether it is added to an existing immune
network (Timmis, 2001; Fukuda et al., 1998; Watanabe et
al., 1998; Ishida, 1996; Lee et al., 1999). From these
AIS’s, Timmis (2001) and Fukuda et al. (1998) did not
use a gene library to create initial antibody nodes while
others (Fukuda et al., 1998; Watanabe et al., 1998; Lee et
al., 1999; Ishida, 1996) initialised antibody nodes with
already known local solutions, which can be regarded as a
gene library. The systems using a gene library typically
developed an artificial immune network in order to find a
global solution under a dynamically changing
environment by finding an optimal combination of
existing local solutions as a global solution. Among these
systems, Timmis (2001), Fukuda et al. (1998), and Lee et
al. (1999) applied a high rate of mutation when cloning
new antibodies, and only Timmis (2001) investigated the
different effects according to different rates of mutation.
In this work, he has shown that the network connectivity
declined as the mutation rate got higher and thus
contributes to increasing the diversity of the antibody
network.

Other work by (De Castro and Von Zuben, 2000; De
Castro and Von Zuben, 2001) developed an AIS by
mimicking exactly the clonal selection process without
differentiating the gene library and the antibody
population. When this system cloned new antibodies, it
applied various mutation rates to each antibody depending
on its affinity. It assigned smaller mutation rates when
affinity is higher with the intention of increasing the
diversity by correcting poorly performing antibodies.
However, this work neither investigated the effect of

mutation on the antibody population evolution, nor the
need to have a separate gene library to accelerate antibody
evolution.

4 EXTENDED DYNAMICS:
SIMULATING GENE LIBRARY
EVOLUTION USING HYPERMUTATION

4.1 ALGORITHM DESCRIPTION

The problem found from previous experiment results was
that the extended DynamiCS obtained high TP rates only
when it produced a large amount of memory detector co-
stimulation. In contrast, for the case having a smaller
amount of memory detector co-stimulation, extended
DynamiCS struggled to show high TP rates. However, the
related work introduced in the previous section suggests
that applying hypermutation to immune cells for cloning
is a necessary mechanism to fine-tune current immune
cells to target non-self antigen binding regions. As a way
of resolving the problem of excessive co-stimulation,
extended DynamiCS applies this mechanism.

 If (immature detector population size +
 mature detector population size
 < non-memory detector pop size)
 {
 Do
 { if (number of deleted memory detectors > 0 &&
 mutation rate != 0)
 { Select a deleted memory detector randomly and
 create its mutant
 Add this mutant to immature detector population.
 } else
 Generate a random detector and
 add it to an immature detector population

 } Until (immature detector population size +
 mature detector population size =
 non-memory detector pop size)
 }

Figure 1. Modified Pseudo Code for Extended DynamiCS

It can be interpreted that low TP rates obtained by the
extended DynamiCS were originated from coarse-grained
non-self antigen niche coverage of activating detectors.
Thus, if these detectors were more fine-tuned to cover
existing non-self antigens, the extended DynamiCS could
have higher TP rates without necessarily having a large
amount of activating detectors. In order to investigate the
effect of hypermutation only, the extended DynamiCS
does not create a separate gene library (i.e., a collection of
useful detector genes). Instead, it continues to maintain
three detector populations: immature, mature and memory
detector populations and treats a portion of the memory
detector population as a gene library. In order to let
memory detectors evolve towards existing non-self
antigens without binding self antigens, the extended
DynamiCS clones memory detectors by applying a
hypermutation operator on deleted memory detectors.
These mutants of deleted memory detectors are added to
an immature detector population for the negative selection
test. Immature detectors in DynamiCS have always been

randomly generated for negative selection. Now extended
DynamiCS produces immature detectors by mutants of
deleted memory detectors, if there are memory detectors
available or by random otherwise. Hence, this further
extension of DynamiCS employs a “virtual gene library”
dynamically made from mutations of deleted memory
detectors. Through the various selection mechanisms and
hypermutation operator, the seed immature detectors
produced by the virtual gene library evolve over time, just
as the immature, mature and memory detectors evolve in
their separate populations. This modification is
summarised in the pseudo code shown in figure 1.

While the mutation rate used in GAs is very low (around
0.01~0.05%), extended DynamiCS employs much higher
rates (0.1% and 0.2%) for hypermutation. This also
follows the mutation strategy of the human immune
system. The human immune system deliberately uses a
higher mutation rate in order to maintain its diversity
(Paul, 1993). Similarly, adopting a higher rate of mutation
is expected to lead detectors to explore new non-self
antigen niches and thus escape from existing self antigen
niches. The following sections will study how an
unusually larger mutation rate affects the performance of
extended DynamiCS.

It also should be noted that hypermutation is applied to
deleted memory detectors, not to existing memory
detectors. This part is a slight variation of the human
immune system. The human immune system clones
successful memory detectors and spreads them to other
lymph nodes distributed in the body. These new cloned
detectors are expected to detect associative non-self
antigens that share some non-self antigen patterns
detected by previously detectors but do not necessarily
have the same non-self antigen patterns with the previous
detectors. In other words, cloned detectors are expected to
detect new antigens belonging to a new antigen cluster as
soon as possible. During this process, the self-tolerance of
new mutants are maintained by the helper T-cells.
However, extended DynamiCS does not have a separate
helper T-detector population to confirm self-tolerance of
newly cloned detectors. Therefore, extended DynamiCS
uses hypermutation in a way to generate new detectors
more tuned to target non-self antigen detection, and at the
same time still effectively avoid self antigen detection.
Memory detectors are deleted when they match self
antigens of the current antigen cluster, but the fact that
they managed to become memory detectors at all implies
that they hold valid information about non-self antigens in
previous clusters. By mutating these and reusing them in
the form of a virtual gene library to seed new immature
detectors, this evolved information is being retained and
fine-tuned by the system.

4.2 EXPERIMENT RESULTS

Two series of experiments were performed in order to
investigate the effects of hypermutation on true positive
(TP) and false-positive (FP) rates by the extended
DynamiCS introduced here. These experiments had the

same values of given parameters that were used in the
experiments of previous work (Kim and Bentley 2002b),
which are summarised in table 1.

Table 1. Parameter values used for DynamiCS experiments

The first series of experiments was performed by varying
A values with mutation rate = 0.1 and the second series
was performed with mutation rate = 0.2. Figure 2 and 3
show the average TP and FP rates of each series of
experiments after running them five times. The X-axes of
these graphs represent the number of generations and the
Y-axes indicate detection rates. Each graph has two lines,
one displaying a True Positive (TP) rate and another
showing a False Positive (FP) rate. The grid lines on the
X-axis were placed at every N generations for N = 30.
Each experiment was also run for maximum 2000
generations.

Table 2. Average numbers of surviving, generated and
deleted memory detectors during 2000 generations, and
average number of memory detector costimulations per
generation for the extended DynamiCS with mutation rate =
0.1. The mean values are followed by the variances in
parentheses.

Extended DynamiCS with Mutation Rate = 0.1

 Surviving
Memory
Detectors

Generated
Memory
Detectors

Deleted
Memory
Detectors

Memory
Detector Co-
stimulation

per generation

A = 5 45.5 (21.67) 535.5 (8869.67) 490 (8448.67) 40.48 (14.35)

A=10 37 (4) 376 (1444.67) 339 (1456.67) 31.39 (1.43)

A=20 32.5 (7) 259.5 (176.33) 227 (172) 28.08 (2.99)

A=40 27.5 (24.5) 203.5 (14964.5) 176 (13778) 22.56 (6.66)

Table 3. Average numbers of surviving, generated and
deleted memory detectors during 2000 generations, and the
average number of memory detector costimulations per
generation for the extended DynamiCS with mutation rate =
0.2. The values in parentheses are variances.

Extended DynamiCS with Mutation Rate = 0.2

 Surviving
Memory
Detectors

Generated
Memory
Detectors

Deleted
Memory
Detectors

Memory Detecor
Co-stimulation
per generation

A = 5 44.75 (8.25) 264.5 (94.33) 219.75 (88.25) 39.15 (10.52)

A = 10 32.75 (24.92) 193.5 (539) 160.75 (393.58) 27.52 (14.62)

A = 20 29 (8.67) 126.5 (53.67) 97.5 (67) 24.48 (6.94)

A = 40 19.5 (0.33) 98 (1078) 78.5 (1013) 16.75 (1.12)

Parameters Values

Tolerisation Period (T) 30

Life Span of Mature Detectors (L) 10

Activation Threshold of Mature Detectors (A) {5, 10, 20, 40}

Number of Generations that Antigens are
Selected from the Same Cluster (N)

30

The effects of hypermutation are clearly revealed when
these results are compared to the results obtained in the
previous work (Bentley and Kim 2002b). From figure 2
and 3, FP rates are consistently low except one case
where A = 5 and mutation rate = 0.2. The differences in
TP rates depending on different mutation rates are clearly
noticeable when A has a larger value. For instance, when
A is 40 without mutants of memory detectors, TP rates
ranged between 0.5 and 0.9. On the other hand, when A is
40 with mutation rate = 0.2, TP rates increase so that they
range between 0.85 and 0.95 (see figure 3). More
importantly, the improvement in TP rates was obtained
without increase of FP rates. The scale of TP rate increase
is much more noticeable when mutation rate is 0.2
although TP rate increase can be seen when A is 40 with
mutation rate = 0.1 (see figure 2). Thus, it is verified that
hypermutation affects the result of extended DynamiCS in

a positive way: TP rates increase while maintaining low
FP rates.

In addition, when A = 40 with mutation rate 0.2 which
shows high TP rates and low FP rates, extended
DynamiCS still maintained the average number of
memory detector co-stimulation per generation as small
as seen previously, when mutants of memory detectors
were absent (Kim and Bentley 2002b). This result can be
found from table 2 and table 3. They show the total
number of surviving, generated and deleted memory
detectors for total two thousand generations when
mutation rate is 0.1 and 0.2 respectively. These numbers
are the average numbers of five runs. For both cases,
extended DynamiCS had the smallest number of memory
detector co-stimulation when A = 40. Furthermore, when
the extended DynamiCS had a larger mutation rate, 0.2, it
performed less memory detector co-stimulation than when
it had a mutation rate 0.1.

A = 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 10

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 10

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 20

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 20

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

A = 40

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A = 40

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Figure 2. TP and FP rates when A varies and T = 30, L = 10, N
=30 with mutation rate = 0.1

Figure 3. TP and FP rates when A varies and T = 30, L = 10,
N =30 with mutation rate = 0.2

To summarise, two series of experimental results show
that TP rates increased when immature detectors were
generated by applying a hypermutation operator to
deleted memory detectors. Furthermore, it maintained low
FP rates and the small number of memory detector co-
stimulation. These positive effects were more clearly
found when a larger mutation rate was applied.

5 DISCUSSION OF DYNAMICS

DynamiCS has been introduced to make our AIS fulfil
two properties required by an effective intrusion detection
system: learn stabilised self behaviours when presented
with only a small subset of self antigens at one time and
learn sudden changes in converged self behaviours. In
order to provide these features to the AIS, DynamiCS
employed several novel components such as immature,
mature and memory detector populations, tolerisation
period, activation threshold, mature detector life-span,
mature and memory detector co-stimulation and applying
hypermutation to generate immature detectors. All of
these novel components were designed by following the
mechanisms existing in the human immune system and
thus led the AIS to yield desired two properties.

Many of these novel components are based on the
different AIS, called LYSIS, proposed by (Hofmeyr,
1999; Hofmeyr and Forrest, 2000). LYSIS is also
equipped with three detector populations (immature,
mature and memory), tolerisation period, activation
threshold, co-stimulation and mature detector life-span.
(Hofmeyr, 1999; Hofmeyr and Forrest, 2000) tested
LYSIS system against network traffic headers collected
for 50 days, consisting of 3900 unique self strings. In
order to scale this size of self strings, (Hofmeyr, 1999;
Hofmeyr and Forrest, 2000) developed LYSIS in a
distributed environment and thus fifty different hosts
generated total 5000 immature detectors per day. Similar
to DynamiCS, LYSIS also dynamically generated
immature detectors and started to monitor new antigens
after the first tolerisation period. Although this system
was tested against real network headers, the real
environment scenario given to these tests was only limited
to the first real environment scenario studied in this work:
learn stabilised self behaviours with only a small subset of
self antigens at one time. Thus, DynamiCS is the only
AIS that employed novel components introduced in this
work and has been tested on another important IDS real
scenario: learn quickly any sudden changes in converged
self behaviours. Under this scenario, DynamiCS was
capable of detecting non-self antigens in a satisfactory
level without losing its self-tolerance and this was
achieved by applying hypermutation, which is not
adopted by LYSIS.

(Hofmeyr, 1999; Hofmeyr and Forrest, 2000) investigated
a way to tune LYSIS behaviours to get desired TP and FP
rates. This study was focused on choosing an appropriate
tolerisation period, activation threshold and decay rate. It

should be noted that the decay rate used in LYSIS was not
adopted by DynamiCS. It was regarded that the number of
parameters used in DynamiCS already seemed to be large
enough to make controlling system behaviour difficult.
Although a decay rate was introduced in LYSIS in order
to replace detectors in a more dynamic way, DynamiCS
managed to provide a similar effect without this
parameter by using a gene library evolution model with
hypermutation.

6 CONCLUSION

As one way to decrease the poor FP rates caused by
memory detectors, DynamiCS was extended by
eliminating memory detectors when they showed a poor
degree of self-tolerance to new antigens (Kim and
Bentley, 2002a). This extended system was tested to
determine whether surviving memory detectors no longer
caused seriously high FP error rates or not. The test
results showed that deletion of memory detectors based
on their self-antigen detection dramatically decreased
high FP rates. However, this method required a larger
amount of co-stimulation in order to gain such benefits.
The large amount of co-stimulation can render the system
weak for intrusion detection. This disadvantage demanded
further extension of DynamiCS.

In order to resolve this problem, this paper explored the
use of hypermutation in DynamiCS to produce the effect
of gene library evolution. This additional extension was
designed to fine-tune generated memory detectors so that
the system obtained higher TP rates without increasing
the amount of co-stimulation. The gene library evolution
was modelled by producing immature detectors via
hypermutation on deleted memory detectors. Thus a
“virtual gene library”, made from mutations of deleted
memory detectors was maintained. The new extension
was tested to determine whether it achieved high TP rates
without increasing the amount of co-stimulation. The test
results confirmed that hypermutation enabled the
evolution of the virtual gene library and thus produced
immature detectors that were better tuned to cover
existing non-self antigens.

References

Kim, J. and Bentley, P. J. (2002a) Towards an Artificial
Immune System for Network Intrusion Detection: An
Investigation of Dynamic Clonal Selection. Proceedings
of Congress on Evolutionary Computation, pp.1015-
1020, 2002.

Kim, J. and Bentley, P. J. (2002b) Immune Memory in the
Dynamic Clonal Selection Algorithm. Submitted to the
first International Conference on Artificial Immune
Systems (ICARIS).

Hofmeyr, S., (1999) An Immunological Model of
Distributed Detection and Its Application to Computer

Security, PhD Thesis, Dept of Computer Science,
University of New Mexico, 1999.

Hofmeyr, S. A., and Forrest, S., (2000) “Architecture for
an Artificial Immune System”, Evolutionary
Computation, Vol. 7, No. 1, Morgan-Kaufmann, San
Francisco, CA, pp. 1289-1296, 2000.

Paul, W. E., (1993) “The Immune System: An
Introduction”, Fundamental Immunology 3rd Ed., W. E.
Paul (Ed), Raven Press Ltd, 1993.

Sompayrac, L., (1999) How the Immune System Works,
Blackwell Sicence, 1999.

Baldwin, J. M., (1896) “A New Factor in Evolution”,
American Naturalist, Vol.30, pp.441-451.

Hightower, R., Forrest, S., and Perelson, A. S., (1996)
“The Baldwin Effect in the Immune System: Learning by
Somatic Hypermutation”, in R.K. Belew and M. Mitchell,
(eds.), Adaptive Individuals in Evolving Populations,
Addison-Wesley, Reading, MA, pp. 159-167, 1996.

Perelson, A. S., Hightower, R., and Forrest, S., (1996)
“Evolution and Somatic Learning in V-Region Genes”,
Research in Immunology, Vol. 147, pp. 202-208.

Hightower, R., Forrest, S., and Perelson, A. S., (1995)
“The Evolution of Emergent Organization in Immune
System Gene Libraries”, Proceeding of the Sixth
International. Conference. on Genetic Algorithms, L.J.
Eshelman (Ed.), Morgan Kaufmann, San Francisco, CA,
pp.344—350, 1995.

Oprea, M., and Forrest, S., (1998) “Simulated Evolution
of Antibody Libraries Under Pathogen Selection”,
Proceeding of IEEE International Conference on Systems,
Man and Cybernetics, 1998.

Oprea, M. and Forrest, S., (1999) "How the Immune
System Generates Diversity: Pathogen Space Coverage
with Random and Evolved Antibody Libraries.",
Proceeding of Genetic and Evolutionary Computation
Conference (GECCO), July,1999.

Dasgupta, D., Cao, Y., and Yang, C., (1999) “An
Immunogenetic Approach to Spectra Recognition”,
Proceeding of Genetic and Evolutionary Computation
Conference (GECCO’ 99), July 13-17, pp149-155, 1999.

Hart, E. and Ross, P., (1999) “An Immune System
Approach to Scheduling in Changing Environments”,
Proc. of Genetic and Evolutionary Computation
Conference (GECCO’99), pp.1559-1566.

Gaspar, A., and Collard, P., (1999) “From Gas to
Artificial Immune Systems: Improving Adaptation in
Time Dependent Optimisation”, Proceeding of CEC99,
1999.

Hajela, P., and Yoo, J. S., (1999) “Immune Network
Modelling in Design Optimization”, in New Ideas in
Optimization, (Eds.) D. Corne, M. Dorigo, & F. Glover,
McGraw Hill, London, pp.203-215, 1999.

Potter, M. A. and De Jong, K.A., (1998) “The
Coevolution of Antibodies for Concept Learning”,

Proceeding of the fifth Intl. Conference on Parallel
Problem Solving From Nature, pp.530-539, 1998.

Mitchell, T., (1997) Machine Learning, McGraw-Hill,
1997.

Nikolaev, N., Iba, H., and Slavov, V., (1999) “Inductive
Genetic Programming with Immune Network Dynamics”,
Advances in Genetic Programming 3, MIT Press, Chapter
15, pp.335-376, 1999.

Michaud, S. R., et al., (2001) “Protein Structure
Prediction with EA Immunological Computation”,
Proceeding of Genetic and Evolutionary Computation
Conference (GECCO’2001), July 7-11, pp.1367-1874,
2001.

Kim, J. and Bentley, P. J. (2001). Towards an Artificial
Immune System for Network Intrusion Detection: An
Investigation of Clonal Selection with a Negative
Selection Operator. In Proc. of CEC2001, the Congress
on Evolutionary Computation, Seoul, Korea, May 27-30,
2001. pp. 1244-1252.

Timmis, J., (2001) Artificial Immune Systems: a Novel
Data Analysis Technique Inspired by the Immune
Network Theory, PhD Thesis, Dept. of Computer Science,
University of Wales, Aberystwyth, 2001.

Fukuda, T., Mori, K., and Tsukiyama, M., (1998)
“Parallel Search for Mutil-Modal Function Optimization
with Diversity and Learning of Immune Algorithm”,
Artificial Immune Systems and Their Applications, (Ed)
Dasgupta, D., Springer-Verlag, Berlin, pp.210 – 220,
1998.

Watanabe, Y., Ishiguro, A., Shirai, Y., and Uchikawa, Y.,
(1998) "Emergent Construction of Behavior Arbitration
Mechanism Based on the Immune System", Proceeding
of ICEC'98, pp.481-486, 1998.

Ishida, Y., (1996) “An Immune Network Approach to
Sensor-Based Diagnosis by Self-Organization”, Complex
Systems, Vol. 10:1, pp. 73-90.

Lee, W., Park, C., and Stolfo, S. J., (1999) “Towards
Automatic Intrusion Detection Using NFR”, to appear in
the Proceeding of 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, 1999.

De Castro, L. N., and Von Zuben, F. J., (2000) “The
Clonal Selection Algorithm with Engineering
Applications”, Proceeding of Artificial Immune System
Workshop, Genetic and Evolutionary Computation
Conference (GECCO’ 2000), pp36-37.

De Castro, L. N., and Von Zuben, F. J., (2001) “AiNet: an
Artificial Immune Network for Data Analysis”, (Book
chapter in) Data Mining: A Heuristic Approach, (Eds)
Abbass, H. A., Sarker R. A., Newton, C. S., Idea Group
Publishing, 2001.

From Optimization to Learning in Changing Environments:The Pittsburgh Immune Classi�er System
Alessio Gaspar and B�eat HirsbrunnerPAI Group, Computer Science Department University of Fribourg (DIUF), Switzerland)http://www.unifr.ch/diuf/pai/ [alessio.gaspar|beat.hirsbrunner]@unifr.chAbstractA simple computational model of secondary im-mune response is used to provide a Pittsburghstyle classi�er system with the ability to improveits reaction to already encountered situations ina dynamical cyclic learning environment. Mainresults obtained with our core algorithm (YaSais)on Time Dependent Optimization problems arebrie
y reminded before to introduce the Pitts-burgh Immune Classi�er System (PICS) which isthen experimentally evaluated on both a staticand dynamical multiplexer problem. Eventually,the Lazy Optimality E�ect, keystone of YaSais'e�ciency, is re-examinated in PICS. Suggestedenhancements are then experimentally evaluated.1 Introduction1.1 Motivation, Previous workWhile it is commonly admitted that evolutionaryalgorithms are adaptive computation approaches,their convergence limits their adaptiveness. Di-versity loss eventually disables the crossover ef-fects and leaves mutations as the only explorationdrive. Consequently, Evolutionary Time Depen-dent Optimization (ETDO) is often used as abenchmark for adaptiveness [14, 13, 16]. Thisframework led us to suggest three necessary (butnot su�cient) properties to characterize the adap-tiveness in changing environments [4]:Reactiveness: ability to recover from transitionsand �nd the new optimum.

Robustness: ability to limit the loss in the best�tness value featured by the population when thetransition occurs.Immunization: ability to improve the robust-ness when undergoing a transition to an alreadyencountered optima.So far, we focussed on evaluating a Simple Arti�-cial Immune System for Evolutionary TDO. Theresults were interesting and encouraged us to in-vestigate how such a basic algorithm can performin learning problems by combining it with clas-si�er systems with the objective to provide thelatter with an immunization capability.1.2 Objective StatementsWe are switching from Time Dependent Opti-mization (TDO) to Time Dependent Learning(TDL) problems and evaluating, along the way, asimple, general purpose, immune algorithm. Nextsection introduces the YaSais algorithm [6, 4],sums up previous results and details the Lazy Op-timality E�ect, keystone of its e�ciency in TDO.Section 3 introduces the Pittsburgh Immune Clas-si�er System (PICS) as a combination of YaSaiswith a Pittsburgh Classi�er System (PCS). Pre-liminary results on a static and then dynamic mul-tiplexer problem (MUX) are compared to thoseobtained by YaSais's on TDO. Section 4 furtherdetails how speci�c evolutionary e�ects presentin YaSais introduced unexpected results in PICS.Suggestions as to how to improve PICS are thenevaluated. Section 5 concludes by discussinganalogies with latent learning classi�er systems.

2 YaSais: the core immune algorithm2.1 GeneralitiesThis section describes YaSais (Yet Another Sim-ple Arti�cial Immune System), an improved ver-sion of Sais algorithm [5], and reviews the mostimportant results (immunization, LOE) needed toground our later discussion on PICS.To quickly locate YaSais among Evolutionary Al-gorithms, let's describe it as a Genetic Algorithmwhich K-Tournament selection has been modi-�ed in order to select only some individuals tobe cloned and then used to perform exploration(crossover and high mutation rate are applied),and which favors good parents vs. mediocreo�springs during recruitment. The main di�er-ences are (1) explicit clustering of the populationinto gatherings, (2) selection of individuals to becloned while others are kept unchanged (clonal se-lection) and (3) use of intensive exploration tech-niques (somatic hypermutation) on clones.To be more accurate, YaSais's key idea is to dividethe population into G equi-sized gatherings of B-Cells1. The selection mechanism decides which B-Cell(s) per gathering will be activated and serveas a basis for further exploration. This approachis loosely inspired by Jernes' Idiotypic Networkstheory [9, 10] on immune system's memory.Simply stated, B-Cells2 can be activated by anti-gens (when directly useful against one of them) orby other B-Cells (anytime). Therefore, if B-CellA activates B which activates C which in turnactivates A, we have a self reinforcing dynamics.Each B-Cell's activation, and therefore reproduc-tion, is ensured in an endogenic way and memo-rizing boils down to integrating B-Cells into suchidiotypic cycles.Evolutionary Algorithms inspired by this theorybend the evolutionary dynamics so that it is notonly convergent but also maintains stable sub-population with respect to other �tness criteriathan optimality in the current environment (eg.previous optimality in TDO).1aka chromosomes in other evolutionary algorithms.2We do not di�erentiate B-Cells and antibody herein.

2.2 YaSais Algorithm� 0. Initialization: create P (0){ Let P (0) be a population of jP j randomB-Cells each � bits long.{ Arbitrary, P (0) is divided in G groups ofB-Cells (Gatherings).{ Generation number t is set to 0.� 1. Evaluation{ For each B-Cell in P (t), compute its �t-ness. For the Pattern Tracking, it is thecomplement of its Hamming distance tothe current arbitrary chosen optimum.{ For each Gathering in P (t), mark thebest �tted B-Cell. There will be G B-Cells marked in P (t).� 2. Clonal Selection: P (t)! Pex{ Create an empty population Pex of sizejPexj = G�CF , where CF is a parameterof the system (the Cloning Factor).{ Fill it with G B-Cells by K-Tournamentsamong the ones marked in Pex.{ Copy each B-Cell added to PeX CFtimes (cloning).{ For each clone in Pex, apply high raterandom mutations (hypermutating).� 3. Recruitment: P (t) + Pex ! P (t+ 1){ For each of the G marked B-Cells in P (t),select a challenger with a K-Tournament(K = 3) in Pex and replace the currentB-Cell only if less �tted.{ Let P (t+ 1) = P (t){ Branch to bf 1. (�xed iterations)2.3 YaSais Algorithm step by stepEvaluation PhaseIn a Pattern Tracking problem [13], the opti-mum is arbitrarily chosen as a point of the searchspace every g generations. The �tness of eachB-Cell is therefore measured as its Hamming dis-tance to the current optimum (thus simulatingimmune-like matching to a given antigen): 8Bi 2

P (t); F itness(Bi) = ���h(Bi; Ot) where Bi is theith B-Cell of P (t), Ot the optimum at time t, �the length of its binary code and �h the Hammingdistance. Every �t = 50 generations (transitionperiod), a new optimum is randomly chosen at aHamming distance �d from the previous one (tran-sition distance). This evaluation also enables usto mark the n best �tted B-Cells in P (t) (n beingan heuristic value).Pattern Tracking can be seen as the dynami-cal counterpart of the 0-max problem which hasbeen widely used to understand genetic algo-rithms. The reasons for choosing this benchmarkare twofold. At �rst, it is simple from a staticpoint of view which helps in keeping experimentsfocussed on the dynamical di�culty and avoid bi-ases induced by static aspects. Secondly, its pa-rameters can be set to feature a speci�c dynamicaldi�culty [3]. This helps evaluating YaSais on wellunderstood and controlled di�culty levels.Clonal Selection PhaseThis phase mimics the core of the immune sys-tem's evolutionary dynamics [8]: cloning theB-Cells matching antigens. We pick up theG best B-Cells from P (t) and clone them CF(Clonal Factor parameter) times each to obtainthe temporary population Pex. Then, we simu-late Somatic Hypermutation3 by randomly mutat-ing each member of Pex and preserving only themutants improving �tness.Recruitment PhaseEventually, we reintroduce worthy B-Cells fromPex into P (t) in order to build P (t + 1). The B-Cells that have not been involved in the buildingof Pex remain unchanged so that they can imple-ment an implicit memory of past optima. Themarked B-Cells are compared to the winner of aK-Tournament (K = 4) in Pex and only replacedif being less �tted.This approach both guarantees stability of thedensities of previous optima which �tness is of nointerest anymore, and an elitist dynamics whichforbids the best �tness featured at next genera-tion to be lower than the current one.3Natural Somatic Hypermutation mutates the DNA ofB-Cells resulting from clonal selection [8].

2.4 Previous Experimental ResultsWe brie
y sum up previous experimental resultsobtained with YaSais on a Cyclic Pattern Track-ing (PT) problem [13, 16] with a focus on its im-munization capability only.In a Cyclic Pattern Tracking (CPT), a list of nsuccessive optima is de�ned (�t �xed for all). Anepoch is a duration of n � �t generations duringwhich all optima are presented. Epochs followeach other and thus enable us to evaluate YaSais'reaction to already encountered transitions.YaSais features a tradeo� between reactivity androbustness [6]. Most evolutionary TDO solutionstrade a good robustness for a high �tness levelor vice et versa. By comparing YaSais to robust[2, 15] and reactive [17, 1, 7] algorithms, we un-derlined that YaSais is equivalent in terms of ef-�ciency to method up to 4 times more compu-tationally expensive which dominate other evolu-tionary algorithms that were compared in [4].On the other hand, YaSais featured an immu-nization capability which is illustrated by Figure1. This experiment was averaged over 50 runsfor a length of 1000 generations (4 epochs). Ya-Sais (CF = 4,G = 8, K = 4, jP j = 40, � = 40,Xc = 0:7, � = 0:01) was applied to a Cyclic Pat-tern Tracking problem with 5 optima (�t = 50 and�d = 5 then increased by 5 at each transition).The upper part of the Figure plots the best �tnessper generation. The �tness loss at transitions isreduced over consecutive epochs which is the signof an ongoing immunization. In the lower part ofthe Figure, the densities of the 5 successive op-tima used in this environment are plotted. Thiscomplements the previous information by show-ing the number of copies of each optimum growduring the period at which is it the current opti-mum. Moreover, these density curves also showthat once non longer the current optimum, eachof these individuals is kept in the population.2.5 The Lazy Optimality E�ect (LOE)So YaSais features an immunization capabilitybut all optima are not memorized durably in

the population and �tness keeps dropping slightlywhen they are encountered again. Why ?

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000

O
pt

im
a

D
en

si
ty

 (
bo

tto
m

),
 B

es
t F

itn
es

s
(t

op
)

Generations

Best Fit

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000

O
pt

im
a

D
en

si
ty

 (
bo

tto
m

),
 B

es
t F

itn
es

s
(t

op
)

Generations

Best Fit
opt1

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000

O
pt

im
a

D
en

si
ty

 (
bo

tto
m

),
 B

es
t F

itn
es

s
(t

op
)

Generations

Best Fit
opt1
opt2

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000

O
pt

im
a

D
en

si
ty

 (
bo

tto
m

),
 B

es
t F

itn
es

s
(t

op
)

Generations

Best Fit
opt1
opt2
opt3

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000

O
pt

im
a

D
en

si
ty

 (
bo

tto
m

),
 B

es
t F

itn
es

s
(t

op
)

Generations

Best Fit
opt1
opt2
opt3
opt4

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000

O
pt

im
a

D
en

si
ty

 (
bo

tto
m

),
 B

es
t F

itn
es

s
(t

op
)

Generations

Best Fit
opt1
opt2
opt3
opt4
opt5

Figure 1: YaSais / Cyclic Pattern TrackingTop: best �tness, Bottom: 5 optima's densitiesAt each generation, jP j � G B-Cells are kept un-changed and G are chosen to initiate an intensivesearch. This mechanism is responsible for loosingprevious optima. By taking a closer look to tran-sitions in a single-run experiments (CPT, G = 8gathering, 5 B-Cells each) we observed the follow-ing pattern: the density of the current optimumdecreases suddenly (eg. 6 B-Cells) and keeps do-ing so (less signi�cantly though) during consec-utive transitions. On the other hand, density ofthe next optimum increases from 2 to 8 B-Cells(same example transition).Why are the B-Cells encoding the current opti-mum more often selected ? Quite simply, theyare (on average) the closest to the new optimumin the population. Remember that in our CPTproblem the n optima are determined as follow:B-Cells are divided in �=n bit-long blocks, 1stoptimum is all '0' except for '1' �lling the 1stblock, 2nd optimum has 2nd block set to '1' andso on. Consequently, the Hamming distance be-tween consecutive optima is constant and equalsto 20 bits (n = 5 and � = 50).We know that YaSais will mark the closest B-Cellsto the new optimum. The probability of a randomstring to match the new optimum is 0:5� and theprobability for it to be located at a Hamming dis-tance less or equal to 20 is P = P20d=0 0:5�:Cd�.

That is, the probability for a non-previously opti-mal B-Cell (assumed to be random) to be locatedcloser to the new optimum than any previous op-timum is P = 0:1 in our case.We checked this on a transition in the previousexperiment. At generation 1000, YaSais lost 6B-Cells encoding previous optimum and gained 6B-Cells encoding new optimum (from 2 to 8). Wealso counted 17 instanced of current or previousoptima. Among the 23 remaining B-Cells, 3 only(P = 0:1) have a chance to be selected instead ofprevious optima. Knowing that G = 8 are goingto be picked up, even if all 3 are retained, 5 out of6 B-Cells encoding previous optimum should beused for exploration (6 B-Cells were used).Therefore, if two consecutive optima are closeenough, the system forgets about the previousone but still features an overall good performance.Why ? When the distance is short, previous op-tima are lost but with limited consequences since�nding the new one is simple enough. Otherwize,if the transition gets more di�cult, the immuniza-tion plays its role. We termed this the Lazy Op-timality E�ect (LOE), since immunization is onlyused when nothing simpler works.We replicated previous experiment with only twooptima and varied their relative distance to checkthe in
uence of this factor. Figure 2 con�rms thatfor a high distance (12 and above) the immuniza-tion is perfect. On the other hand, results arequite good for a very low distance as well (2) andless good between those two extrema. This is nosurprise since a small �d minimizes the �tness loss(cf supra) but it is important to understand thatthis is achieved without immunization. Examin-ing the density curves of each optima con�rmsthat with small �d, optima are lost regardless ofthe misleadingly appealing �tness curve.2.6 Conclusion: YaSais / TDOThe experimental results on Pattern Tracking re-vealed that YaSais is an e�cient dynamical op-timization Tool. A restriction should be kept inmind as we only considered so far non epistasicproblems for which we suspect the somatic hy-

30

35

40

45

50

0 250 500 750 1000

B
es

t F
itn

es
s

Generations

Best Fitness

Distance 2

30

35

40

45

50

0 250 500 750 1000

B
es

t F
itn

es
s

Generations

Best Fitness

Distance 8

30

35

40

45

50

0 250 500 750 1000

B
es

t F
itn

es
s

Generations

Best Fitness

Distance 12Figure 2: YaSais / Cyclic Pattern TrackingDistance Between Optima vs. Immunizationpermutation to play a central role in improvingthe system's reactiveness (cf next section).YaSais also features an improved robustness toenvironmental changes; Whenever the transitions

are easy (low �d), the natural diversity kept inthe population is enough to ensure a good levelof �tness to be kept during the transitions. Onthe other hand, when confronted to di�cult tran-sitions, YaSais takes advantage of any relevant in-formation in the population such as previous op-tima. Therefore, an implicit tradeo� is realizedbetween the use of the random diversity and the\oriented one" induced by the immunization pro-cess. The rule seems to be \if it is hard to �nd,remember it, otherwise, just drop it". Even if notreaching a perfect immunization ability as we ini-tially expected, we must admit that, although itis more \lazy", YaSais uses at best its capabilities.3 PICS Time Dependent Learning3.1 PICS algorithmClassi�er Systems (CS) have been investigatedin two main
avors. Michigan style CS evolvea population of rules which constitute altogetherthe CS which policy is evaluated in a given en-vironment. If a reward is earned, ReinforcementLearning techniques are used to perform the nec-essary Credit Assignment among the rules thatcontributed to the successful behavior.On the other hand, the Pittsburgh approach isabout evolving a population where each individ-ual encodes the ruleset of an independent CS.Fitness is computed by decoding a given individ-ual into a CS and evaluating its interaction withthe environment (eg. average reward over a giventime). This approach only relies on evolution to�nd e�cient classi�ers and is therefore a naturalcandidate for designing an hybrid algorithm em-bedding the key features of YaSais.Therefore, we evolved individuals encoding fullCS with YaSais instead of a conventional Evolu-tionary Algorithm. Our objective is to provide acognitive immunity by preserving previously use-ful policies in the population. This section detailsexperiments on both static and dynamic multi-plexer problems and discusses LOE in a learningcontext.

3.2 Preliminary Experiments: S-7-MUXLet us consider a 7 bits instance of the Static Mul-tiplexer Problem (S-7-MUX): we have 6 bits longinputs and 1 bit output. The input is separatedin 2 address bits and 4 data bits. For any input,the correct output is the input data bit locatedat an index given by the decimal value of the 2input address bits. For instance, input [10 0010]corresponds to output [1]. Consequently, the fol-lowings are the minimal and most generic [11] setof rules solving the 7 bits multiplexer problem:[00 0]]]] ! [0] [10]]0]] ! [0][00 1]]]] ! [1] [10]]1]] ! [1][01]0]]] ! [0] [11]]]0] ! [0][01]1]]] ! [1] [11]]]1] ! [1]Ideally, classi�er systems should converge towardthis rule set. Basic approaches do not most ofthe time but recent advances help in ensuring thegenerality of the solutions [18].We started o� by applying PICS to S-7-MUXwith the following experimental conditions:1300 generations, results averaged over 20 runsB-Cells: � = 140 bits encoding 20 rulesRules: [2 + 4] : [1] (input = 2 bits address + 4bits data, output = 1 bitPopulation: jP j = 100Evaluations: over 30 input samples (among 64possible) randomized at each �tness function callSelection: K = 2 (select) K = 3 (recruit)PICS speci�cs: G = 20, CF = 3Operators: Xc = 0:8 (uniform) and � = 0:01Figure 3 plots the �tness of the best individualof each generation (upper curve). Knowing thatthe best reward in this one-step environment is1000, we can deduce that the approach is perform-ing decently, featuring an asymptotic convergencewhich is pretty common in evolutionary compu-tation. During single runs, we picked up the bestindividual at generation 1300 and fed the classi-�er system it encodes with all 64 possible input.The result of this evaluation of its \coverage" ofall perceptions revealed that highly �tted individ-uals's coverage copuld be as low as 47%.To be able to measure this phenomenon reliably

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400

Fitn
ess

 Va
lue

Generations

Per Call
Bst Eval Fitness
Bst Real FitnessFigure 3: PICS / S-7-MUXTop: Evaluated Fitness, Bottom: Real Fitnessand understand it better we decided to measureanother statistics during the experiment. Thelower curve represents the �tness of the best B-Cell of each generation once computed over 300samples. This value is more representative of thetrue value of each individual and, as can be seen,is lower than the one featured by the \quick" 30samples evaluation scheme driving evolution.Let us keep this issue in mind and move on tothe other experiments. Section 4 will revisit theseobservations, suggest and evaluate a solution.3.3 D-7-MUX ExperimentThis section completes the previous experimentby evaluating PICS immunization capability ina dynamical environment. The dynamical 7 bitsMultiplexer problem (D-7-MUX) is similar to itsstatic counterpart. We decided to have a transi-tion period �t = 2000 to allow full convergence.Four di�erent environments are going to be pre-sented during one epoch (8000 generations) andthen repeated over and over for 4 epochs (32000generations). The �rst environment is S-7-MUX.Then, we generated 3 other environments from itby adding a shift value � when decoding the ad-dress bits. During �rst period, � = 0 then � = 1and so on up to � = 3 after which � = 0 againas we start a new epoch. Consequently, input ad-dress bits 00 will correspond to the 1st input databit during 1st period, then to the 2nd during 2nd

period and so on. Let's see how input [00 01_0 _1]is multiplexed in the 4 environments4:� = 0 [00 01_0 _1] ! [0]� = 1 [00 01_0 _1] ! [1]� = 2 [00 01_0 _1] ! [_0]� = 3 [00 01_0 _1] ! [_1]Figure 4 also plot the best �tness per generationas evaluated by PICS (upper curve) and accu-rately evaluated over 300 samples (lower curve).The vertical dotted lines represent transitionsfrom one epoch to another. Other parameterswere kept identical to previous experiment. Thefollowing observations can be made:Immunization:PICS is indeed able to get immunized to previ-ously encountered optima. Both �tness curvesprogressively reduce their drop o� at transitionsto new optima over epochs. PICS' core algorithmtherefore turned out to be able to feature an iden-tical immunization ability for both TDO and TDLproblems which is the �rst point we wanted tomake sure of in this paper.Resuming Learning:Both best �tness curves, but especially the lowerone, increase from epoch to epoch. After reachinga certain �tness level while solving the �rst envi-ronment (� = 0), PICS deal with 3 other environ-ments. When it is again dealing with the �rst one,its immunization, besides increasing robustness,also enables it to use the �t = 2000 generations ofthe period to improve its �tness level in this envi-ronment. It seems to do so from epoch to epoch,\resuming" its learning of each successive optimaeach time and giving an overall asymptotic trendof improvement.Fitnesses Di�erences:It can also be noticed that the di�erence betweenboth �tness curves tends to reduce asymptoti-cally over epochs. It can be said that despitethe problem underlined in the previous section,PICS manages to overcome it over time as it ac-cumulates information about its environment overepochs instead of converging and discarding any4Doted notation _0 and _1 is only used to make the ex-ample unambiguous, only a binary alphabet is used.

information while re-converging toward anotheroptimum.

500

600

700

800

900

1000

0 8000 16000 24000 32000

Fitn
ess

 Va
lue

Generations

Per Call
Bst Eval Fitness
Bst Real FitnessFigure 4: PICS / D-7-MUXTop: Evaluated Fitness, Bottom: Real Fitness4 Corrupted Lazy Optimality E�ect4.1 From LOE to CLOEOur hypothesis is that the LOE is responsible forthe observations in Figure 3.The upper part of Figure 5 illustrates how B-Cellsshould be specialized. Let us consider one gath-ering in P (t). Once the �tness function is com-puted for all its B-Cells, one is activated (selectedto be copied into Pex). This B-Cell will be re-placed by a better �tted o�spring resulting fromthe exploration performed in Pex. This can beseen as the gathering getting its best �tted B-Cell furthermore specialized to �t the problem athand. When environment changes, another indi-vidual will be specialized to meet its requirementsor a previously activated one re-used thus loosingpart of its previous specialization (LOE).The lower part of Figure 5 illustrates what hap-pens in practice when changing the evaluation setevery generation. As can be seen, this boils downto changing the �tness function and PICS reactsby specializing another B-Cell (LOE). Conceptu-ally, this is right insofar that, from the evolution-ary algorithm standpoint, Time Dependent andStochastically Evaluated �tness landscapes are thesame: �tness values are altered over time. What

Sample Set S3
Environment#2

Sample Set S2
Environment #1

Sample Set S1
Environment #1

........

Generation t Generation t+1 Generation t+ N

P(t+N)P(t+1)P(t)

Sample Set S1
Environment #1

Sample Set S2
Environment #1

Sample Set S3
Environment#2

........

Generation t Generation t+1 Generation t+ N

P(t+N)P(t+1)P(t)

t, (t+1) and (t+N). For the latter, a transitionto another environment just occured.
1 Gathering containing 3 B−Cells illustrated in Population at Generations Activated B−Cell

Non−Activated B−Cell

Figure 5: CLOE: specialization of B-CellsTop: expected activation, Bottom: observed onecauses such a change does not make much quali-tative di�erence even though it may in
uence dif-�culty of transitions [3]. Nevertheless, we wouldlike PICS to di�erentiate between changes in theenvironment, which call for specialization, andbias due to the stochastic nature of evaluation.It is worth noticing that in practice the situationis even worse since the evaluation sample is ran-domized at every �tness function call thus increas-ing the bias in comparison to the above example.Next section evaluates a way to compensate thisCorrupted Lazy Optimization E�ect (CLOE).4.2 Getting to know CLOE betterAs previously stated, if we take the best B-Cellproduced by a run and evaluate it on all possible64 inputs, its e�ciency is way inferior to what its�tness value promised. This can be seen by takingthe best B-Cell of each generation and evaluatingits �tness over 300 samples instead of 30.This suggests that a whole gathering may be ableto react correctly to all possible inputs but a sin-gle B-Cell is not. While we expected B-Cells ofa gathering to specialize into successively optimalpolicies, it seems they specialized in solving sub-sets of all possible input samples.How can we help PICS to specialize only dur-

ing transitions ? Our working hypothesis is thatchanging the evaluation set at each generation (asillustrated in Fig. 5) or at each �tness call (asdone by PICS) makes a di�erence. We checked itby changing the stochastic evaluation policy ac-cordingly and decided to randomize the evalua-tion samples set at each generation and use it forevaluating the whole population.The top plotting in Figure 6 is similar to Fig.3. Experimental conditions were identical (S-7-MUX) except concerning evaluation policy. Thefollowing observations can be made:Convergence Time:It has been shortened from 1400 to 400 genera-tions thus providing the algorithm with a fastestway to handle static learning problems.Fitnesses Di�erences:The sampled �tness values converge sooner to-ward the ones obtained with a thorough evalu-ation. This should lead to a better accuracy ine�ciency of evolved policies.Our second hypothesis is that the more two con-secutive evaluation sets di�er, the more likely itis for another B-Cell to be activated (cf. LOE).Therefore, we introduced the overlap parameter:the number of samples kept unchanged from onegeneration to the next in the evaluation set.The �rst plotting in Figure 6 had a null overlap(new evaluation sets at each generation), the sec-ond has a maximal value (29 samples are kept un-changed over 30). Results indicate that increas-ing this parameter degrades e�ciency and furtherseparate the real �tness value from the one com-puted by PICS internally. This clearly invalidatesour hypothesis and leads us to conclude that thebest evaluation policy is to use the same evalu-ation set for the whole population and change itcompletely at each generation to maximize the di-versity of samples the system learns from.5 Conclusion5.1 DiscussionPICS shows that YaSais core principles can beused to get immunized to successively optimal

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400

Fitn
ess

 Va
lue

Generations

Overlaping 0
Bst Eval Fitness
Bst Real Fitness

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400

Fitn
ess

 Va
lue

Generations

Overlaping 29
Bst Eval Fitness
Bst Real FitnessFigure 6: PICS / S-7-MUXNew Evaluation Scheme (overlap parameter)policies in a TDL problem. The learning problemwe investigated can also be seen as a highly epis-tasic, stochastically evaluated optimization prob-lem and thus as a validation of our immune corealgorithm on a more di�cult problem than thePattern Tracking one that we used so far.An interesting analogy can also be drawn with thelatest advances from the Classi�er System com-munity concerning latent learning approaches.These systems do not only seek for an optimalpolicy in a given environment but also build pro-gressively a model of the environment which isimproved by every trial no matter how wrong orright it is [12]. PICS also models successivelyoptimal policies which, combined altogether, de-scribe the whole environment dynamics. This in-formation could be used by engineers to improveevolved classi�er systems or simply understandhow the system came to such a solution.

5.2 SynthesisThis paper presented an hybrid algorithm com-bining an immune algorithm (YaSais) with aClassi�er System. The so-called Pittsburgh Im-mune Classi�er System (PICS) has been evalu-ated in both a static and dynamic Time Depen-dent Learning (TDL) environment based on the7 bits multiplexer problem. Preliminary experi-mental results revealed that PICS features a sec-ondary immune response in its way to discoverand memorize optimal policies for various envi-ronments. A particular evolutionary e�ect hasbeen given more attention, explaining e�ciencyand suggesting a new improvement which was de-tailed and evaluated on a static environment.5.3 PerspectivesCurrent work focuses on CLOE as well as deter-mining the in
uence of main parameters (CF, G).A reviewer's suggestion also caught our interest:Is YaSais suitable for multimodal optimization de-spite the fact that explicit clustering is intuitivelynot interesting if no information on the numberof peaks is available ? Each gathering should con-tain elements from all niches and thus the gather-ing's size (and number) is critical to ensure theycan hold all optima in the multimodal or dy-namic environment. This makes setting the Gparameter highly problem-dependent. This argu-ment relies on the assumption that each gather-ing converges to the same set of optima. If YaSaiscan evolves di�erently composed gatherings, theirnumber and sizes become less critial in providinginstances of all optima in the population. Thisremains to be established.Acknowledgment: Swiss National ScienceFoundation grant #20-65301. We are grateful tothe reviewers for the above discussion.References[1] H.C. Cobb and J.J. Grefenstette. Geneticalgorithms for tracking changing environ-ments. In Icga-5, 1993.

[2] J.C. Culberson. Genetic invariance: A newparadigm for genetic algorithm. TechnicalReport 92-02, University of Alabama, 1992.[3] A. Gaspar. Etude de l'adaptativite de sys-temes evolutionnaire en environnement a �t-ness dynamique. In Ph.D. Dissertation, Uni-versity of Nice Sophia Antipolis, July 2000,2000.[4] A. Gaspar. Secondary immune response fortime dependent optimization. Technical re-port, PAI group, DIUF, University of Fri-bourg (Switzerland), July 2002. 23p.[5] A. Gaspar and P. Collard. From gas to ar-ti�cial immune systems: Improving adapta-tion in tdo. In CEC-1999: IEEE Congresson Evolutionary Computation. IEEE societypress, 1999.[6] A. Gaspar and P. Collard. Two models ofimmunization for time dependent optimiza-tion. In SMC-2000: IEEE InternationalConference on Systems, Man and Cybernet-ics. Special Track on Arti�cial Immune Sys-tems. IEEE society press, 2000.[7] J.J. Grefenstette. Genetic algorithms forchanging environments. In R. Manner andB. Manderick, editors, Parallel Problem Solv-ing from Nature 2, pages 465{501. ElsevierScience Publishers B.V., 1992.[8] Ron Hightower, Stephanie Forrest, andAlan S. Perelson. The Baldwin e�ect inthe immune system: Learning by somatichypermutation. In Richard K. Belew andMelanie Mitchell, editors, Adaptive Individ-uals in Evolving Populations: Models andAlgorithms, pages 159{167. Addison Wesley,Reading, MA, 1996.[9] N.K. Jerne. Towards a network theory ofthe immune system. Annals of Immunology,125(C):373{389, 1974.[10] N.K. Jerne. Idiotypic networks and otherpreconceived ideas. Immunological Reviews,(79):5{24, 1984.

[11] Tim Kovacs. XCS Classi�er System ReliablyEvolves Accurate, Complete, and MinimalRepresentations for Boolean Functions. InRoy, Chawdhry, and Pant, editors, Soft Com-puting in Engineering Design and Manufac-turing, pages 59{68. Springer-Verlag, Lon-don, 1997.[12] W. Stolzmann P. Gerard and O. Sigaud. Yacs: a new learning classi�er system using antic-ipation. Journal of Soft Computing : SpecialIssue on Learning Classi�er Systems.[13] K. Pettit and E. Swigger. An analysis of ge-netic based pattern tracking and cognitivebased component tracking models of adap-tation. In Proceedings of National Confer-ence on AI (AAAI-83), pages 327{332. Mor-gan Kaufmann, 1983.[14] R. Salomon and P. Eggenberger. Adaptationon the evolutionary time scale: A workinghypothesis and basic experiments. In Evolu-tion Arti�cielle, pages 297{308, 1998.[15] R.E. Smith, S. Forrest, and A.S. Perelson.Searching for diverse, cooperative popula-tions with genetic algorithms. EvolutionaryComputation, 1(2):127{149, 1993.[16] F. Vavak and T.C. Fogarty. Comparisonof steady state and generational genetic al-gorithms for use in nonstationary environ-ments. In IEEE International Conferenceon Evolutionary Computation (ICEC), pages192{195, 1996.[17] F. Vavak, T.C. Fogarty, and K. Jukes. A ge-netic algorithm with variable range of localsearch for tracking changing environments.In Hans-Michael Voigt, Werner Ebeling, IngoRechenberg, and Hans-Paul Schwefel, edi-tors, Parallel Problem Solving from Nature{ PPSN IV, pages 376{385, Berlin, 1996.Springer.[18] Stewart W. Wilson. Classi�er �tness basedon accuracy. Evolutionary Computation,3(2):149{175, 1995.

Neuro-Immune and Self-Organizing Map Approaches to Anomaly
Detection: A Comparison

Fabio González
�

and Dipankar Dasgupta
Division of Computer Science
The University of Memphis

�

and Universidad Nacional de Colombia
{fgonzalz, ddasgupt}@memphis.edu

Abstract

The purpose of this work is to investigate
a hybrid approach (neuro-immune tech-
nique) for anomaly detection on time se-
ries data. In many anomaly detection ap-
plications, only positive (normal) samples
are available for training purpose. However,
conventional classification algorithms need
both positive and negative samples. The
proposed approach uses normal samples to
generate abnormal samples that are subse-
quently used as training data for a neural
network. The approach is compared against
an anomaly detection technique that uses
self-organizing maps to cluster the normal
data sets (samples).

1 Introduction

The anomaly detection problem can be stated as a
two-class classification problem: given an element of
the space, classify it as normal or abnormal. Different
terminologies are used in different applications, such
as “novelty [3] or surprise [13] detection”, “fault de-
tection” [20], and “outlier detection” . Accordingly,
many approaches have been proposed which include
statistical [4], machine learning [15], data mining [16]
and immunological inspired techniques [2, 8, 11].

In many anomaly detection applications, however,
negative (abnormal) samples are not available at the
training stage. For instance, in a computer security
application, it is difficult, if not impossible, to have
information about all possible attacks. In the machine
learning approaches, the lack of samples from the ab-
normal class causes difficulty in the application of su-
pervised techniques (e.g. classification). Therefore,

the obvious machine learning solution is to use an un-
supervised algorithm (e.g. clustering).

In our previous work [9], we presented an approach
inspired by the immune system that allows the ap-
plication of conventional classification algorithms to
perform anomaly detection tasks. This approach uses
a negative selection algorithm (NSA) [6] coupled with
a classification algorithm to produce an anomaly de-
tection function. The paper [9] examines the possibil-
ity of combine NSA with a neural network classifier
in order to detect anomalies in a time series. The pur-
pose of the present work is to perform further experi-
mentation and compare the results to those produced
by an unsupervised technique that clusters the nor-
mal samples.

The clustering technique used for this purpose is self-
organizing maps (SOM) [14]. It is applied to the
normal samples to produce clusters that constitute a
compact description of the normal space. This com-
pact representation is subsequently used to classify
new samples as normal or abnormal [7, 17, 12].

2 Neuro-Immune Technique for
Anomaly Detection

The NSA was initially proposed by Forrest and her
group [6] based on the principles of self/non-self dis-
crimination in the immune system. It uses as input, a
set of strings that represents the normal data (self set)
in order to generate detectors in the non-self space.
The negative detectors are chosen by matching them
to the self strings: if a detector matches it is discarded,
otherwise, it is kept. Some efficient implementations
of the algorithm (for binary strings) that run in linear
time with the size of self have been proposed [5, 6, 11].
However, the time complexity of these algorithms is
exponential on the size of the matching window (the
number of bits to use in the comparison of two binary

strings).

We proposed [9] a new version of the NSA that rep-
resents the self/non-self space as � -dimensional real
vectors. One of the advantages of this approach is
that it is easier to extract meaningful knowledge from
the generated detectors as the representation is closer
to that of the problem space. The detectors generated
by the NSA are used as artificial abnormal samples
that serve as input to a classification algorithm that
learns an anomaly detection function.

Similar to the binary-valued NSA [6], the real-valued
NSA [9] tries to cover the non-self space with mini-
mum number of detectors. This is accomplished by
an iterative process that updates the position of the
detectors driven by two objectives: to move detectors
away from self points and to keep the detectors sep-
arated in order to maximize the covering of non-self
space (non-overlapping). This algorithm is shown in
Figure 1.

’d.iter’++ ’d.iter’ = 0

Discard ’d’
Move ’d’ away

from self

’d.iter’ > ’t’ ? Move ’d’ away
from other
detectors

any self point?
Does ’d’ match

For each detector ’d’

NoYes

NoYes

Figure 1: Illustrates an iteration of the real-valued
negative selection algorithm with a flow diagram.

We used a hybrid approach by combining NSA and
a neural network–multi-layer perceptron (MLP) with
a hidden layer trained using back-propagation [10].
Figure 2 illustrates the basic idea of the approach.
During the training stage, the input corresponds to
the normal samples (feature vectors extracted from
normal time series), while the NSA [9] is used to gen-
erate abnormal samples. Subsequently, the normal
and abnormal samples are used to train a neural net-
work classifier. The trained neural network corre-
sponds to the anomaly detection function that is used
during the testing phase to classify new samples as
normal or abnormal.

Anomaly
Detection
Function

Samples
New

Samples

Negative

Negative
Selection
Algorithm

Normal
Samples

Abnormal

Training Detection

Normal

Classification
Algorithm

NN Based

Figure 2: A process to generate an anomaly character-
ization function from normal samples.

3 Anomaly Detection Using
Self-Organizing Maps

A self-organizing map (SOM) is a type of neural net-
work that uses competitive learning [14, 10]. A SOM
is able to capture the important features contained on
the input space and provides a structural representa-
tion that preserves a topological structure. The out-
put neurons of a SOM are organized in a one- or two-
dimensional lattice. The weight vectors of these neu-
rons represent prototypes of the input data that can
be interpreted as the centroids of clusters of similar
samples.

In our experiments, we used SOM to cluster the nor-
mal samples. After the network is trained, the gen-
erated clusters are used to determine if a new sample
is normal or abnormal. The basic idea is: if a new
sample is ’close’ enough to a normal cluster it is con-
sidered normal, otherwise it is classified as abnormal.

In general, we have a distance function
�������	�
����
��

that
measures how close the sample s is to the cluster, K.
To determine the abnormality of a new sample, the
following function is used:�������	���������������������! #"%$'&��������	�
����
)(*�'+�
)(-,/.10

2-3	4�5�687�9:3<; �
���=�?>A@ if
���B���	�������������C�D���FEG�H

otherwise
�

where, C is the set of clusters (found by the SOM al-
gorithm) that represents the normal sub-space. If we

think the function
�������	�
����� ��� ���D�
�

is a kind of mem-
bership function1 of the abnormal subspace, the func-
tion 2 3	4�5�6�7�9:3<; ����� corresponds to the crisp version of
it. In this case, the value t represents a threshold that
defines the boundary between the normal and abnor-
mal classes.

In order to determine a good distance measure���B���	������
��
, we tested three options (in all the cases��� represents the centroid of the cluster K, neuron

weights):

� Euclidean distance. This is the natural (or naive)
choice since the SOM algorithm uses it to deter-
mine if a sample belongs to a given cluster:���B���	������
��=���	��� ��� �

� Normalized distance. The idea is to take into ac-
count the size of the cluster. Some clusters can be
very sparse and others can have all the elements
concentrated around the centroid. A measure of
the size is the standard deviation. So, the stan-
dard deviation of the distance to the centroid of
all the elements in a cluster (�) is calculated and
it is used to normalize the distance:

���B���	������
��=� �	��� � � �
	 �

��

� Minkowsky distance. The Euclidean dis-
tance gives the same importance to all the fea-
tures. So, it is possible that a sample with a
non-negligible deviation in one feature will be
considered as having the same overall deviation
as a pattern with small deviation on many fea-
tures. The
 � distance only takes into account
the maximum of the differences for all the fea-
tures:�������	�
����
 �=�
��� &D+ � (� ����� + for

� � @ �������	� � 0
4 Time Series Data Set

We used the Mackey-Glass equation to generate time
series data. It is a non-linear, delay-differential equa-
tion whose dynamics exhibit chaotic behavior for
some parameter values. The equation is:������ � ��� �*����� �

@�� � ���*�!�"� � ��#$� � �8�
1Strictly speaking, this is not a membership function

since it is not bounded. However, we can apply, for in-
stance, a sigmoid function to make it bounded.

The parameters chosen were
� � H �&%

,
� H � @ , and' � @ H . This set of parameters are the general choice

in the literature [3, 1]. The parameter
�

controls the
complexity of the series dynamics. For the first exper-
iment

� �)(H
was used to generate the normal sam-

ples.

The equation is solved numerically using fourth-
order Runge-Kutta method (included in Matlab) with
an integration step of 0.02, a sampling rate of 12, and
an initial value vector with all its elements equal to
1.1. The normal samples were produced from a time
series with 500 elements generated using

� �*(H
and

discarding the first 1000 samples to eliminate the ini-
tial value effect. The resulting time series is shown in
Figure 3.a.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

M
ac

ke
y-

G
la

ss
 ti

m
e

se
rie

s

Time

(a) normal time series

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

M
ac

ke
y-

G
la

ss
 ti

m
e

se
rie

s

Time

(b) time series with an anomaly

Figure 3: Mackey-Glass series: (a) normal, using
���

(H
, (b) with an anomaly,

�)� @,+ from 300 to 400.

The features are extracted using a sliding overlapping
window of size n. If the time series has the values:� - �.�0/ ���1�2� �3� 9 , the feature set generated from it will be
the following:

� � - � �0/ � �2�1� � 5 �� � /�� � � � �2�1� � 5�� -��
...

...
...

...� � 9�� 5�� - � 9�� 5�� / �2�1� � 9 �
So, from a time series with m elements and using a
sliding window of size n, we can generate (m-n+1)
samples.

In order to perform the testing, we need new normal
and abnormal samples. For abnormal samples, we
change the parameter of the series (

�
). For the prelim-

inary experiments, we used
�

= 17 (as used in [3, 1]).
Figure 3.b shows an example of a time series with an
abnormal segment (time 300 to 400) where the param-
eter

�
was changed from 30 to 17.

5 Experimental Results

5.1 Experiments using SOM technique

To perform SOM experiments, we used a tool
that is available on Internet (GeneCluster [19],
http://www-genome.wi.mit.edu/cancer/
software/software.html). This tool is primarily
used to cluster gene expression information, how-
ever, it can be applied to any kind of data. We found
the visual representation of clusters is very useful for
our purpose.

For this set of experiments, we used the normal
Mackey-Glass data, as plotted in Figure 3, for train-
ing. A window size of 4 was used to generate the fea-
ture vectors. Accordingly, a total number of 497 pat-
terns were generated. The clusters generated by the
application using an output grid of 6 � 4 neurons are
shown in Figure 4. Each box shows a cluster centroid
(middle curve) as well as the variations for each fea-
ture: maximum value (upper curve) and minimum
value (lower curve) in the cluster. The number of
samples on each cluster is also presented.

We also tested output grids with 3 � 4, and 8 � 8 neu-
rons. In all cases, the SOM algorithm was run for 100
iterations using Gaussian neighborhood. The initial
and final learning rate were 0.1 and 0.005 respectively.
The initial 	 value was 5 and the final was 0.2.

During testing, we applied the technique described
on section 3 using the data in Figure 3.b. Fig-
ure 5 shows the anomaly detection function (i.e.���B���	�������������C�D���

) for three different distance measures
using an SOM with an 8 � 8 output layer configura-
tion.

Figure 4: Clustering of the normal data produced by
GeneCluster [19] (columns in right hand side are not
relevant to our experiments).

It is clear that the anomaly detection based on Eu-
clidean distance (Figure 5.a) is not able to detect the
anomalous patterns. The normalized distance does
not improve either. The plots corresponding to
 �
Minkowsky distance show an increase on the aver-
age value between the time 300 and 400 which corre-
sponds to the anomalous section. This indicates that
this distance measure is able to detect the anomalous
patterns.

It is to be noted that the change on the number of out-
put neurons reflected on the shape of the function,
i.e. the more neurons on the output, the smoother the
function. This is explained by the fact that more neu-
rons imply more clusters which can approximate the
normal set better.

The Euclidean distance and the normalized distance
assume that the clusters are spherical, that is, the dis-
tribution is the same for all directions. It seems that
this is not the case, as it is evidenced in the poor per-
formance of these distance measures. The
 � dis-
tance eliminates, to some degree, the interference be-
tween features and this seems to be an advantage for
this specific problem. However, its main drawback is
that it does not take into account the shape of the clus-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

)
(E

uc
lid

ea
n)

Time

(a) Euclidean distance

0

5

10

15

20

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

)
(N

or
m

al
iz

ed
)

Time

(b) normalized distance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

)
(M

ax
)

Time

(c) ��� Minkowsky

Figure 5: Anomaly function (
�������	�������������������

) gener-
ated using the SOM-based technique and applied to
the testing set. The net has an 8 � 8 output layer. Each
graph represents a different distance measure: (a) Eu-
clidean distance, (b)Normalized distance, and (c)
 �
Minkowsky distance.

ter. Our hypothesis is that a distance measure such as
Mahalanobis distance will perform much better, since
it can represent ellipsoid clusters.

The anomaly function presents many peaks; in order
to smooth it, a moving average technique was ap-
plied. The new output

����
is calculated from the old

output
���

using the following formula:
���� �	��
(
� - � � � (�

where s is the smoothing factor and indicates the size
of the averaging window. Figure 6 shows the re-
sults of the smoothing process for the anomaly func-
tion corresponding to
 � Minkowsky distance using� � @ H . It is evident from the figure, how the smooth-
ing process makes a clear boundary between the nor-
mal and the abnormal sections. As it was discussed
previously, the contrast is bigger for the SOM with
more output neurons (8 � 8). A quantitative compar-
ison of these anomaly functions is performed in sec-
tion 5.3.

5.2 Experiments using Neuro-Immune anomaly
detection technique

The data in Figure 3 was used to generate the train-
ing set using a window size of 4. This generated 497
normal samples that were used as input for the NSA
which generated 400 abnormal samples. The normal
samples were assigned an output value of 0.0 and the
abnormal samples an output value of 1.0. For the clas-
sification phase, a multilayer neural network with 4
inputs, and one output neuron was used. We tested
three different MLPs with 6, 12, and 16 hidden neu-
rons respectively.

The training algorithm was back-propagation with
momentum using the following parameters: learning
rate 0.2, momentum 0.9, number of epochs 4000. Fig-
ure 7 shows the output of the a MLP with 16 hidden
units when applied to the testing set.

The results show that the trained MLPs are able to
detect the anomalous segment present on the testing
set. The output from the simplest MLP (six hidden
neurons) shows more spikes. A possible explanation
is that a larger number of hidden neurons allows to
represent more details of the normal subspace. How-
ever, the smoothing process is able to eliminate most
of them.

5.3 Comparison of the two techniques

In order to compare the two techniques (SOM and
neuro-immune) it is necessary to define a measure of

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

)
(M

ax
 s

m
oo

th
ed

)

Time

(a)

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

)
(M

ax
 s

m
oo

th
ed

)

Time

(b)

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

)
(M

ax
 s

m
oo

th
ed

)

Time

(c)

Figure 6:

� Minkowsky distance anomaly function
smoothed using a moving average with parameter� � @ H . The different plots represent different topolo-
gies: (a) 3 � 4 neurons, (b) 6 � 4 neurons, and (c) 8 � 8
neurons.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

N
eu

ra
l n

et
w

or
k

ou
tp

ut

Time

(a) raw output (without using the smooth-
ing function)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

N
eu

ra
l n

et
w

or
k

ou
tp

ut
 (

sm
oo

th
ed

)

Time

(b) smoothed output using ��� ���

Figure 7: Neural network output for the testing set
using 16 hidden neurons (neuro-immune technique).

accuracy for the classification. The idea is to calcu-
late the number of true positives (TP, anomalous el-
ements identified as anomalous), true negatives (TN,
normal elements identified as normal), false positives
(FP, normal elements identified as anomalous) and
false negatives (FN, anomalous elements identified as
normal). These values are used to calculate two mea-
sures of effectiveness:

Detection rate
� ���
��� �
	 �

False alarm rate
� 	 �
� � �
	 �

In general, we want a very high detection rate with
a very low false alarm. However, there is a trade-off
between these two measures. This trade-off can be
shown using ROC (receiver operating characteristics)
curves [18]. The sensitivity of the system is controlled

by a threshold that determines when a new sample is
normal or abnormal. By varying this threshold, we
can obtain different values for the detection and false
alarm rates which are used to plot ROC curves.

Figure 8 shows ROC curves for SOM-based and
neuro-immune anomaly detection techniques. In all
cases, it is clear that the smoothing parameter (s)
improves the classification accuracy. However, the
SOM-based technique seems to be more sensitive
to its value. This is explained by the fact that the
anomaly detection function generated by this method
is not as smooth as the one generated by the neuro-
immune method.

For the two methods the most complex networks gen-
erate better results. As it was explained previously, a
most complex network allows a more detailed mod-
eling of the normal subspace.

The best anomaly detection functions from the two
methods are shown in Figure 9. There is no clear win-
ner. The anomaly detection function generated by the
SOM method is able to produce a very good detec-
tion rate with a low false alarm rate. But, if a small
increase on the false alarm rate is allowed, the neuro-
immune method is able to produce a better detection
rate than the SOM method.

An important issue on anomaly detection is how to
find a good threshold value that produces a detection
rate with an acceptable false alarm rate. This could
be very difficult if the anomaly detection function
is very sensitive to this threshold. Figure 10 shows
how the detection and false alarm rates change when
the threshold is modified. For the neuro-immune
method, the detection rate increases gradually as the
threshold increases. The false alarm rate only in-
creases at the end, producing a good range of thresh-
old values where it is possible to have a high detec-
tion rate keeping the false alarm rate low. In the case
of the SOM-based method, the detection rate changes
suddenly with a small change on the threshold. The
range of threshold values that can produce a good de-
tection rate with a low false alarm rate is very small.
This means, that the threshold has to be chosen very
carefully and that a small variation can easily deteri-
orate the performance of the anomaly detection sys-
tem.

6 Conclusions

In this paper, we compared two different approaches
for anomaly detection: one uses a neuro-immune
technique and the other uses self-organizing maps

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

s=1
s=5

s=10
s=15

(a) SOM-based method

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

s=1
s=5

s=10
s=15

(b) Neuro-Immune method

Figure 8: ROC curves for different values of the
threshold parameter (

�
).

(SOM). Their performances, from the point of view of
classification accuracy, appears to be very similar. In
both cases, the smoothing process (moving average)
improved the classification performance significantly.

As it was expected, more complex neural networks
had better performance; SOM networks were, in gen-
eral, more complex than the feed-forward networks
(MLP) used on the neuro-immune technique that ex-
hibit similar performance. For instance, two net-
works that are compared (shown in figure 10) have� @ ��� � � @�� � @�� ��� + weights (neuro-immune) and
� � ���

� %�� � weights (SOM) needed to be trained.

In general, the anomaly detection functions gener-
ated by the neuro-immune method were relatively
smoother. This represents a clear advantage as they
are less sensitive to changes on the threshold. How-

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Neuro-Immune, 16 h.n., s=5
SOM, 8x8, s=10

Figure 9: Best anomaly detection functions of each
method.

ever, there is room for improvement for the SOM
method too. For instance, a distance measure that
takes into account the shape of the cluster (like Ma-
halanobis distance) will probably improve the per-
formance of the SOM method. So, it is necessary to
test new distance measures and perform additional
experiments using wide variety of data sets in order
to make a fair comparison.

7 Acknowledgments

This work was funded by the Defense Advanced Re-
search Projects Agency (no. F30602-00-2-0514) and
National Science Foundation (grant no. IIS-0104251).

References

[1] T. Caudell and D. Newman. An adaptive reso-
nance architecture to define normality and de-
tect novelties in time series and databases. In
IEEE World Congress on Neural Networks, pages
166–176, Portland, Oregon, 1993.

[2] D. Dagupta and F. González. An Immunity-
Based Technique to Characterize Intrusions in
Computer Networks. IEEE Transactions on Evo-
lutionary Computation, 6(3):1081–1088, June 2002.

[3] D. Dasgupta and S. Forrest. Novelty detection in
time series data using ideas from immunology.
In Proceedings of the International Conference on In-
telligent Systems, pages 82–87, June 1996.

[4] D. Denning. An intrusion-detection model. IEEE
Transactions on Software Engineering, 13(2):222–
232, February 1987.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
at

e

Threshold

Neuro-Immune, 16 h.n., s=5

Detection rate
False Alarm rate

(a) Neuro-Immune method

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
at

e

Threshold

SOM, 8x8, s=10

Detection rate
False Alarm rate

(b) SOM-based method

Figure 10: Evolution of detection and false alarm rates
when the threshold is modified.

[5] P. D’haeseleer, S. Forrest, and P. Helman. An im-
munological approach to change detection: Al-
gorithms. In Proceedings of the 1996 IEEE Sympo-
sium on Computer Security and Privacy, pages 110–
119, Oakland, CA, 1996. IEEE Computer Society
Press.

[6] S. Forrest, A. Perelson, L. Allen, and
R. Cherukuri. Self-nonself discrimination
in a computer. In Proc. IEEE Symp. on Research in
Security and Privacy, pages 202–212, May 1994.

[7] K. L. Fox, R. R. Henning, J. H. Reed, and R. P.
Simonian. A neural network approach towards
intrusion detection. In Proc. 13th NIST-NCSC Na-
tional Computer Security Conference, pages 125–
134, 1990.

[8] F. González and D. Dasgupta. An imunogenetic
technique to detect anomalies in network traf-
fic. In Gecco 2002: proceedings of the genetic and
evolutionary computation conference, pages 1081–
1088, New York, 9-13 July 2002. Morgan Kauf-
mann Publishers.

[9] F. González, D. Dasgupta, and R. Kozma. Com-
bining Negative Selection and Classification
Techniques for Anomaly Detection. In Proceed-
ings of the Congress on Evolutionary Computation,
pages 705–710, Honolulu, HW, May 2002.

[10] S. Haykin. Neural Networks : A Comprehensive
Foundation. Macmillan, New York, 1994.

[11] S. A. Hofmeyr and S. Forrest. Architecture for an
artificial immune system. Evolutionary Computa-
tion, 8(4):443–473, 2000.

[12] W. H. Hsu, L. S. Auvil, W. M. Pottenger,
D. Tcheng, and M. Welge. Self-organizing sys-
tems for knowledge discovery in databases. In
In Proceedings of the International Joint Conference
on Neural Networks (IJCNN-99), Washington, DC,
July 1999.

[13] E. Keogh, S. Lonardi, and B. Y. Chiu. Finding
surprising patterns in a time series database in
linear time and space. In Proceedings of The Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’02), Al-
berta, Canada, 2002.

[14] T. Kohonen. Self-Organizing Maps, volume 30 of
Springer Series in Information Sciences. Springer,
Berlin, Heidelberg, 1995. (Second Extended Edi-
tion 1997).

[15] T. Lane. Machine Learning Techniques For The Com-
puter Security. PhD thesis, Purdue University,
West Lafayette, IN, 2000.

[16] W. Lee and S. Stolfo. Data mining approaches
for intrusion detection. In Proceedings of the 7th
USENIX Security Symposium, pages 26–29, San
Antonio, TX, January 1998.

[17] L. Portnoy, E. Eskin, and S. J. Stolfo. Intrusion de-
tection with unlabeled data using clustering. In
Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMSA-2001), Philadelphia,
PA, November 2001.

[18] F. Provost, T. Fawcett, and R. Kohavi. The case
against accuracy estimation for comparing in-
duction algorithms. In Proceedings Of 15th In-
ternational Conference On Machine Learning, pages

445–453, San Francisco, Ca, 1998. Morgan Kauf-
mann.

[19] P Tamayo, D Slonim, J Mesirov, Q Zhu, S Kitaree-
wan, E Dmitrovsky, ES Lander, and TR Golub.
Interpreting patterns of gene expression with
self-organizing maps: methods and application
to hematopoietic differentiation. Proc Natl Acad
Sci U S A, 96(6):2907–12, March 1999.

[20] T. Y. Yoshikiyo. Fault detection by mining associ-
ation rules from house-keeping data. In Proceed-
ings of International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (i-SAIRAS
2001), Montreal, Canada, June 2001.

An Approa
h to Solve Multiobje
tive OptimizationProblems Based on an Arti�
ial Immune SystemCarlos A. Coello Coello and Nareli Cruz Cort�esCINVESTAV-IPN (Evolutionary Computation Group)Departamento de Ingenier��a El�e
tri
a/Se

i�on de Computa
i�onAv. IPN No. 2508, Col. San Pedro Za
aten
o, M�exi
o, D. F. 07300

oello�
s.
investav.mx, nareli�
omputa
ion.
s.
investav.mxAbstra
tIn this paper, we propose an algorithm tosolve multiobje
tive optimization problems(either
onstrained or un
onstrained) usingthe
lonal sele
tion prin
iple. Our approa
his
ompared with respe
t to another algo-rithm that is representative of the state-of-the-art in evolutionary multiobje
tive opti-mization. For our
omparative study, twometri
s are adopted and graphi
al
ompar-isons with respe
t to the true Pareto frontof ea
h problem are also in
luded. Resultsindi
ate that the proposed approa
h is verypromising.1 Introdu
tionThe immune system is one of the most important bio-logi
al me
hanisms humans possess sin
e our own lifedepends on it. In re
ent years, several resear
hers havedeveloped
omputational models of the immune sys-tem that attempt to
apture some of their most re-markable features su
h as its self-organizing
apability[11, 9℄.From the information pro
essing perspe
tive, the im-mune system
an be seen as a parallel and distributedadaptive system [10, 3℄. It is
apable of learning, ituses memory and is able of asso
iative retrieval of in-formation in re
ognition and
lassi�
ation tasks. Par-ti
ularly, it learns to re
ognize patterns, it rememberspatterns that it has been shown in the past and itsglobal behavior is an emergent property of many lo
alintera
tions [3℄. All these features of the immune sys-tem provide, in
onsequen
e, great robustness, faulttoleran
e, dynamism and adaptability [9℄. These arethe properties of the immune system that mainly at-tra
t resear
hers to try to emulate it in a
omputer.

In this paper, we propose an approa
h to solve multi-obje
tive optimization problems (either with or with-out
onstraints) based on the
lonal sele
tion prin
iple.2 The Immune SystemThe main goal of the immune system is to prote
t thehuman body from the atta
k of foreign (harmful) or-ganisms. The immune system is
apable of distinguish-ing between the normal
omponents of our organismand the foreign material that
an
ause us harm (e.g.,ba
teria). These foreign organisms are
alled antigens.The mole
ules
alled antibodies play the main role onthe immune system response. The immune response isspe
i�
 to a
ertain foreign organism (antigen). Whenan antigen is dete
ted, those antibodies that best re
-ognize an antigen will proliferate by
loning. Thispro

ess is
alled
lonal sele
tion prin
iple [4℄.The new
loned
ells undergo high rate mutations orhypermutation in order to in
rease their re
eptor pop-ulation (
alled repertoire). These mutations experi-en
ed by the
lones are proportional to their aÆnityto the antigen.The highest aÆnity antibodies experiment the lowestmutation rates, whereas the lowest aÆnity antibodieshave high mutation rates. After this mutation pro
essends, some
lones
ould be dangerous for the body andshould therefore be eliminated.After these
lonation and hypermutation pro
esses �n-ish, the immune system has improved the antibodies'aÆnity, whi
h results on the antigen neutralizationand elimination.At this point, the immune system must return toits normal
onditions, eliminating the ex
edent
ells.However, some
ells remain
ir
ulating throughout thebody as memory
ells. When the immune system islater atta
ked by the same type of antigen (or a sim-

ilar one), these memory
ells are a
tivated, present-ing a better and more eÆ
ient response. This se
onden
ounter with the same antigen is
alled se
ondaryresponse.The algorithm proposed in this paper is based on the
lonal sele
tion prin
iple previously des
ribed.3 Multiobje
tive OptimizationMultiobje
tive optimization (also
alled multi
riteriaoptimization, multiperforman
e or ve
tor optimiza-tion)
an be de�ned as the problem of �nding [15℄:a ve
tor of de
ision variables whi
h satis�es
onstraints and optimizes a ve
tor fun
tionwhose elements represent the obje
tive fun
-tions. These fun
tions form a mathemati
aldes
ription of performan
e
riteria whi
h areusually in
on
i
t with ea
h other. Hen
e,the term \optimize" means �nding su
h asolution whi
h would give the values of allthe obje
tive fun
tions a

eptable to the de-signer.Formally, we
an state the general multiobje
tive op-timization problem (MOP) as follows:De�nition 1 (General MOP): Find the ve
tor~x� = [x�1; x�2; : : : ; x�n℄T whi
h will satisfy the m inequal-ity
onstraints:gi(~x) � 0 i = 1; 2; : : : ;m (1)the p equality
onstraintshi(~x) = 0 i = 1; 2; : : : ; p (2)and optimizes the ve
tor fun
tion~f(~x) = [f1(~x); f2(~x); : : : ; fk(~x)℄T (3)where ~x = [x1; x2; : : : ; xn℄T is the ve
tor of de
isionvariables. 2In other words, we wish to determine from among theset F of all numbers whi
h satisfy (1) and (2) the par-ti
ular set x�1; x�2; : : : ; x�n whi
h yields the optimum val-ues of all the k obje
tive fun
tions of the problem.Another important
on
ept is that of Pareto optimal-ity, whi
h was stated by Vilfredo Pareto in the XIX

entury [16℄, and
onstitutes by itself the origin of re-sear
h in multiobje
tive optimization:De�nition 2 (Pareto Optimality:): We say that~x� 2 F , is Pareto optimal if for every ~x 2
 andI = f1; 2; : : : ; kg either,^i 2 I (fi(~x) = fi(~x�)) (4)or, there is at least one i 2 I su
h that (assumingmaximization) fi(~x) � fi(~x�) (5)2In words, this de�nition says that ~x� is Pareto optimalif there exists no feasible ve
tor ~x whi
h would in
reasesome
riterion without
ausing a simultaneous de
re-ment in at least one other
riterion.Pareto optimal solutions are also termed non-inferior,admissible, or eÆ
ient solutions [2℄; their
orrespond-ing ve
tors are termed nondominated. These solutionsmay have no
learly apparent relationship besides theirmembership in the Pareto optimal set. This is the setof all solutions whose
orresponding ve
tors are non-dominated with respe
t to all other
omparison ve
-tors. When plotted in obje
tive spa
e, the nondom-inated ve
tors are
olle
tively known as the Paretofront.4 The Proposed Approa
hAs indi
ated before, our algorithm is based on the
lonal sele
tion prin
iple, modeling the fa
t that onlythe highest aÆnity antibodies to the antigens will pro-liferate. Our algorithm uses the
on
ept of Paretodominan
e to generate nondominated ve
tors. Also,an external (or se
ondary) memory is used to storenondominated ve
tors found along the evolutionarypro
ess, in order to move towards the true Pareto frontover time (this
an be seen as a form of elitism in evo-lutionary multiobje
tive optimization [2℄).4.1 The AlgorithmOur algorithm is the following:1. Generate randomly the initial population.2. Initialize the se
ondary memory so that it isempty.

3. Determine for ea
h individual in the population,if it is (Pareto) dominated or not. For
onstrainedproblems, determine if an individual is feasible ornot.4. Split the population into antigens and antibod-ies. The division
riterion is Pareto dominan
e(i.e., nondominated individuals are the antigensand dominated individuals are the antibodies).In
onstrained problems, feasible individuals areantigens, too. Note that either of the two
riteria(Pareto dominan
e or feasibility) is suÆ
ient foran individual to be
onsidered an antigen. How-ever, to guide the sear
h properly, we distinguishbetween \very good" (or ideal) antigens and thosewhi
h are only \good". For that sake, we assigna weight (w) to ea
h antigen a

ording to the fol-lowing rules:� w = 4 for nondominated and feasible anti-gens (the best ones).� w = 3 for nondominated antigens (even ifinfeasible).� w = 2 for feasible antigens (even if they aredominated).Note that in the previous rules, Pareto dominan
eis given more importan
e than feasibility. Thesevalues were arbitrarily adopted to give more orless importan
e to ea
h of the
ases previouslyindi
ated. Note however, that the same valuesare adopted in all the examples presented in thispaper. Also, note that in un
onstrained problems,all nondominated individuals are made antigenswith a w = 2.5. Copy the antigens (with w = 4 for
onstrainedproblems and with w = 2 for un
onstrained prob-lems) to the se
ondary memory.6. Sele
t an antigen (regardless of its weight) at ran-dom.7. Assign a �tness value to ea
h of the antibodies a
-
ording to their mat
hing value (Z) with respe
tto the antigen (randomly)
hosen from the previ-ous step (see Figure 1). Note that a new antigenis randomly sele
ted for ea
h antibody.8. Sele
t the Q �ttest antibodies from the antibodiespool where the �tness
riterion is de�ned by thevalue of Z.9. Create a number N of
opies of the antibodiessele
ted.

Matches: 5

Antigen: 0 1 1 1 1 0 0 1 0

Antibody: 0 1 1 0 0 1 1 1 0

Length: 3 2
W W

Match value: 5 + 3 + 2 = Z Figure 1: Mat
hing measure between an antigen andan antibody. The weights w are used to in
rease thevalue of Z when an antibody mat
hes a highly desir-able antigen (i.e., nondominated and feasible).10. Assign a mutation rate (MR) to ea
h
lone, a
-
ording to their similarity with an antigen ran-domly
hosen. The higher the similarity the lowerthe mutation rate, and vi
eversa.11. Apply mutation rate MR to ea
h
lone.12. The new population is formed by the union of theoriginal antibodies and their
lones.13. The population size is returned to its origi-nal value, allowing the nondominated individuals(and the feasible ones if dealing with a
onstrainedproblem) survive.14. Go ba
k to step 3 until
onvergen
e o

urs or af-ter rea
hing a
ertain (predetermined) number ofiterations.The antigen-antibody mat
hing measure (Z) adoptedin this paper is adapted from Farmer's proposal [7℄.This mat
hing measure
ounts the number of mat
hingbits of the two strings
ompared as well as the numberof
onse
utive mat
hing bits. For example, if we havethree
ontiguous similarities on the strings we add avalue of 3 raised to its w value to the total mat
hingmeasure (see �gure 1).Note that this algorithm is not really a geneti
 algo-rithm sin
e no sexual re
ombination takes pla
e. In-stead, only a
lonation of individuals is used to gener-ate the new population of the algorithm.4.2 Se
ondary MemoryWe use a se
ondary or external memory as an eli-tist me
hanism in order to maintain the best solutionsfound along the pro
ess. The individuals stored in thismemory are all nondominated not only with respe
tto ea
h other but also with respe
t to all of the pre-vious individuals who attempted to enter the external

0 1 2 3 4 5

0

4

3

5

2

1

Space covered by the grid for objective 1

Sp
ac

e
co

ve
re

d
by

 th
e

gr
id

 f
or

 o
bj

ec
tiv

e
2

The lowest fit individual for objective 1
and the fittest individual for objective 2

T
he low

est fit individual for objective 2
and the fittest individual for objective 1Figure 2: An adaptive grid to hadle the se
ondarymemorymemory. Therefore, the external memory stores ourapproximation to the true Pareto front of the prob-lem.In order to enfor
e a uniform distribution of nondom-inated solutions that
over the entire Pareto frontof a problem, we use the adaptive grid proposed byKnowles and Corne [13℄ (see Figure 2).Ideally, the size of the external memory should be in�-nite. However, sin
e this is not possible in pra
ti
e, wemust set a limit to the number of nondominated solu-tions that we want to store in this se
ondary memory.By enfor
ing this limit, our external memory will getfull at some point even if there are more nondominatedindividuals wishing to enter. When this happens, weuse an additional
riterion to allow a nondominated in-dividual to enter the external memory: region density(i.e., individuals belonging to less densely populatedregions are given preferen
e).The algorithm for the implementation of the adaptivegrid is the following:1. Divide obje
tive fun
tion spa
e a

ording to thenumber of subdivisions set by the user.2. For ea
h individual in the external memory, de-termine the
ell to whi
h it belongs.3. If the external memory is full, then determinewhi
h is the most
rowded
ell.4. To determine if a
ertain antigen is allowed toenter the external memory, do the following:� If it belongs to the most
rowded
ell, then itis not allowed to enter.� Otherwise, the individual is allowed to en-ter. For that sake, we eliminate a (randomly

hosen) individual that belongs to the most
rowded
ell in order to have an available slotfor the antigen.5 ExperimentsIn order to validate our approa
h, we used severaltest fun
tions reported in the standard evolutionarymultiobje
tive optimization literature [5, 20, 2℄. Inea
h
ase, we generated the true Pareto front of theproblem (i.e., the solution that we wished to a
hieve)by enumeration using parallel pro
essing te
hniques.Then, we plotted the Pareto front generated by ouralgorithm, whi
h we
all the multiobje
tive immunesystem algorithm (MISA). The results indi
ated be-low were found using the following parameters: Max-imum number of iterations = 150, population size =70,
lonation rate = 0.8, number of
lones = 15, sizeof the external memory = 100. The above parametersprodu
e a total of 138,000 �tness fun
tion evaluations.MISA was
ompared against the mi
ro-geneti
 algo-rithm for multiobje
tive optimization, whi
h was re-
ently proposed [1℄. This algorithm is representativeof the state-of-the-art in evolutionary multiobje
tiveoptimization and has been found to produ
e similaror better results than the NSGA-II [6℄ and PAES [13℄.To allow a fair
omparison, the mi
ro-GA performedthe same number of �tness fun
tion evaluations asMISA.Despite the graphi
al
omparisons performed, the twofollowing metri
s were adopted to
ompare our results:� Two Set Coverage (SC): This metri
 was pro-posed in [22℄, and it
an be termed relative
ov-erage
omparison of two sets. Consider X 0; X 00 �X 0 as two sets of phenotype de
ision ve
tors.SC is de�ned as the mapping of the order pair(X 0; X 00) to the interval [0; 1℄.SC(X 0; X 00) , jfa00�X 00; 9a0�X 0 : a0 � a00gjjX 00j (6)If all points in X 0 dominate or are equal to allpoints in X 00, then by de�nition SC = 1. SC = 0implies the opposite. In general, SC(X 0; X 00) andSC(X 00; X 0) both have to be
onsidered due toset interse
tions not being empty. Of
ourse, thismetri

an be used for both spa
es (obje
tivefun
tion or de
ision variable spa
e), but in this
ase we applied it in obje
tive fun
tion spa
e. Theadvantage of this metri
 is that it is easy to
al-
ulate and provides a relative
omparison based

upon dominan
e numbers between generations oralgorithms.� Spa
ing (S): This metri
 was proposed by S
hott[18℄ as a way of measuring the range (distan
e)varian
e of neighboring ve
tors in the Pareto frontknown. This metri
 is de�ned as:S ,vuut 1n� 1 nXi=1(d� di)2 ; (7)where di = minj(j f i1(~x) � f j1 (~x) j + j f i2(~x) �f j2 (~x) j), i; j = 1; : : : ; n, d is the mean of all di,and n is the number of ve
tors in the Pareto frontfound by the algorithm being evaluated. A valueof zero for this metri
 indi
ates all the nondomi-nated solutions found are equidistantly spa
ed.The parameters used by the mi
ro-GA for the exper-iments reported below are the following: maximumnumber of generations = 8400, population size = 4,number of grid subdivisions = 25, memory size = 50,
rossover rate = 0.8, number of iterations to a
hievenominal
onvergen
e = 4, size of the external mem-ory = 100. We the previous parameters, the mi
ro-GA performs a total of 138,000 �tness fun
tion evalu-ations.Example 1Minimize: F = (f1(x; y); f2(x; y)), wheref1(x; y) = x;f2(x; y) = (1 + 10y) �[1� (x1 + 10y)� � x1 + 10y sin(2�qx)℄and 0 � x; y � 1, q = 4, � = 2.The
omparison of results between the true Paretofront of this example and the Pareto front produ
edby MISA is shown in Figure 3. Note that the Paretofront is dis
onne
ted (it
onsists of four Pareto
urves).In this
ase: SC(MISA;mi
ro � GA) = 0:304 andSC(mi
ro�GA;MISA) = 0:29. This indi
ates a verysimilar behavior from both algorithms and we
an saythat there is a tie among the �nal nondominated so-lutions produ
ed by the two algorithms. In terms ofspa
ing, the results are presented in Table 1. Notethat the average results of MISA are better than thoseof the mi
ro-GA.

Table 1: Spa
ing for example 1best average worst std.dev.MISA 0.008853 0.114692 0.62904 0.175955mi
ro-GA 0.007773 0.177104 0.991838 0.319061Table 2: Spa
ing for example 2best average worst std.dev.MISA 0.008853 0.107427 0.209062 0.054843mi
ro-GA 0.04119 0.1446 1.197458 0.253813Example 2Our se
ond example is a two-obje
tive optimizationproblem proposed by S
ha�er [17℄ that has been usedby several resear
hers [19℄:Minimize f1(x) = 8>><>>: �x if x � 1�2 + x if 1 < x � 34� x if 3 < x � 4�4 + x if x > 4 (8)
Minimize f2(x) = (x� 5)2 (9)and �5 � x � 10.The
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 4. In this
ase:SC(MISA;mi
ro � GA) = 0:487 and SC(mi
ro �GA;MISA) = 0:56. As in the previous example, thesevalues indi
ate a very similar behavior from both al-gorithms and we
an say that there is a tie among the�nal nondominated solutions produ
ed by the two al-gorithms. In terms of spa
ing, the results are shown inTable 2. Note again that the average results of MISAare better than those of the mi
ro-GA.Example 3The third example is the three-obje
tive fun
tion prob-lem proposed by Viennet [21℄:Minimize: F = (f1(x; y); f2(x; y); f3(x; y))

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2

f1

PF true
Immune system

Figure 3: Comparison of results for the �rst example. The true Pareto front is shown as a
ontinuous line (notethat the horizontal segments are NOT part of the Pareto front and are shown only to fa
ilitate drawing thefront) and the Pareto front found by MISA is shown as
rosses.

0

2

4

6

8

10

12

14

16

18

-1 -0.5 0 0.5 1 1.5

f2

f1

PFtrue example 2
Immune system

Figure 4: Comparison of results for the se
ond test fun
tion. The true Pareto front of the problem is shown asa
ontinuous line (note that the verti
al segment is NOT part of the Pareto front and is shown only to fa
ilitatedrawing the front) and the Pareto front found by MISA is shown as
rosses.

where:f1(x; y) = (x � 2)22 + (y + 1)213 + 3;f2(x; y) = (x + y � 3)2175 + (2y � x)217 � 13;f3(x; y) = (3x� 2y + 4)28 + (x � y + 1)227+15and: �4 � x; y � 4, y < �4x+ 4, x > �1, y > x� 2.The
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 5. In this
ase:SC(MISA;mi
ro � GA) = 0:673 and SC(mi
ro �GA;MISA) = 0:605. As in the previous example,these values indi
ate a very similar behavior from bothalgorithms and we
an say that there is a tie amongthe �nal nondominated solutions produ
ed by the twoalgorithms. In terms of spa
ing, the results are shownin Table 3. Note that the average results of the mi
ro-GA are better than those of MISA. In this
ase, MISAhad a poorer performan
e in terms of uniform distri-bution than the mi
ro-GA.Example 4The fourth example was proposed by Kita [12℄:Maximize F = (f1(x; y); f2(x; y))where: f1(x; y) = �x2 + y;f2(x; y) = 12x+ y + 1x; y � 0, 0 � 16x + y � 132 , 0 � 12x + y � 152 , 0 �5x+ y � 30.The
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 6. In this
ase:SC(MISA;mi
ro � GA) = 1:00 and SC(mi
ro �GA;MISA) = 0:145. In this
ase, MISA produ
ed so-lutions that
learly dominated or were equal to thosegenerated by the mi
ro-GA (therefore the value of 1.0).This
learly indi
ates a better behavior of MISA. Interms of spa
ing, the results are shown in Table 4. Interms of this metri
, the average results of the mi
ro-GA are better than those of MISA. Note however, thatsin
e the solutions generated by the mi
ro-GA are
ov-ered (i.e., dominated) by those produ
ed by MISA, the

Table 4: Spa
ing for example 4best average worst std.dev.MISA 0.141532 0.518706 1.145541 0.349627mi
ro-GA 0.039568 0.115826 0.830159 0.180039fa
t that these solutions have a more uniform distri-bution is less relevant, sin
e these solutions are poorerthan those generated by MISA.Example 5Our �fth example is a two-obje
tive optimizationproblem de�ned by Kursawe [14℄:Minimize f1(~x) = n�1Xi=1 ��10 exp��0:2qx2i + x2i+1��(10)Minimize f2(~x) = nXi=1 �jxij0:8 + 5 sin(xi)3� (11)where: �5 � x1; x2; x3 � 5 (12)The
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 7. In this
ase:SC(MISA;mi
ro � GA) = 0:3490 and SC(mi
ro �GA;MISA) = 0:96. In this
ase, the mi
ro-GA pro-du
ed solutions that
learly dominated or were equalto those generated by MISA (therefore the value very
lose to 1.0). This
learly indi
ates a better behav-ior of the mi
ro-GA. In terms of spa
ing, the resultsare shown in Table 5. Note that the average resultsof MISA are better than those of the mi
ro-GA. Notehowever, that sin
e the solutions generated by MISAare
overed (i.e., dominated) by those produ
ed by themi
ro-GA, the fa
t that these solutions have a moreuniform distribution is less relevant, sin
e these solu-tions are poorer than those generated by the mi
ro-GA.Summarizing, we
an see that our approa
h has a very
ompetitive behavior with respe
t to the mi
ro-GAwhen dealing with un
onstrained test fun
tions. How-ever, in
onstrained test fun
tions is not as
ompeti-tive (in general), but the results are still a

eptable as

PFtrue example 3
Immune system

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
f1 -13

-12.8
-12.6

-12.4
-12.2

-12
-11.8

-11.6

f2

15
16
17
18
19
20
21
22
23
24

f3

Figure 5: Comparison of results for the third test fun
tion. The true Pareto front of the problem is shown asdots and the Pareto front found by MISA is shown as
rosses.Table 3: Spa
ing for example 3best average worst std.dev.MISA 0.382708 0.515023 0.632426 0.057835mi
ro-GA 0.270519 0.294236 0.315999 0.012565

7.4

7.6

7.8

8

8.2

8.4

8.6

-6 -4 -2 0 2 4 6 8

f2

f1

PFtrue example 4
Immune system

Figure 6: Comparison of results for the fourth test fun
tion. The true Pareto front of the problem is shown asa
ontinuous line and the Pareto front found by MISA is shown as
rosses.Table 5: Spa
ing for example 5best average worst std.dev.MISA 2.008484 2.382588 3.201155 0.292547mi
ro-GA 2.945237 3.299231 3.905389 0.353365

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f2

f1

PFtrue example 5
Immune system

Figure 7: Comparison of results for the �fth test fun
tion. The true Pareto front of the problem is shown as a
ontinuous line (note that the horizontal segment is NOT part of the Pareto front and is shown only to fa
ilitatedrawing the front) and the Pareto front found by MISA is shown as
rosses.
an be seen in the
orresponding graphs. Nevertheless,further improvements are required so that MISA
anin
orporate
onstraints more eÆ
iently into its �tnessfun
tion.6 Con
lusions and Future WorkWe have presented a new multiobje
tive optimizationalgorithm based on the
lonal sele
tion prin
iple. Theapproa
h seems promising and is able to produ
e re-sults similar or better than those generated by an al-gorithm that represents the state-of-the-art in evolu-tionary multiobje
tive optimization when dealing withun
onstrained test fun
tions. However, the algorithmstill requires further improvements so that it
an han-dle
onstraints more eÆ
iently. Su
h work is
urrentlyunder way.Additionally, we will be performing dire
t
omparisonswith other evolutionary multiobje
tive optimizationte
hniques su
h as PAES [13℄, the NSGA-II [6℄ andMOGA [8℄ with elitism. In su
h
omparative study,additional metri
s will be implemented.Our goal is to produ
e a highly
ompetitive algorithm(based on the arti�
ial immune system) that repre-sents a viable alternative to solve multiobje
tive opti-mization problems of any kind (either
onstrained orun
onstrained).

A
knowledgementsWe thank the
omments of the anonymous reviewersthat greatly helped us to improve the
ontents of thispaper. The �rst author gratefully a
knowledges sup-port from CONACyT through proje
t 34201-A. These
ond author a
knowledges support from CONACyTthrough a s
holarship to pursue graduate studies atthe Computer S
ien
e Se
tion of the Ele
tri
al Engi-neering Department at CINVESTAV-IPN.Referen
es[1℄ Carlos A. Coello Coello and Gregorio Tos
anoPulido. Multiobje
tive Optimization using aMi
ro-Geneti
 Algorithm. In Lee Spe
tor, Erik D.Goodman, Annie Wu, W.B. Langdon, Hans-Mi
hael Voigt, Mitsuo Gen, Sandip Sen, Mar
oDorigo, Shahram Pezeshk, Max H. Garzon, andEdmund Burke, editors, Pro
eedings of the Ge-neti
 and Evolutionary Computation Conferen
e(GECCO'2001), pages 274{282, San Fran
is
o,California, 2001. Morgan Kaufmann Publishers.[2℄ Carlos A. Coello Coello, David A. Van Veld-huizen, and Gary B. Lamont. Evolutionary Al-gorithms for Solving Multi-Obje
tive Problems.Kluwer A
ademi
 Publishers, New York, May2002. ISBN 0-3064-6762-3.[3℄ Dipankar Dasgupta, editor. Arti�
ial ImmuneSystems and Their Appli
ations. Springer-Verlag,Berlin, 1999.

[4℄ Leandro Nunes de Castro and Fernando Jos�e VonZuben. Arti�
ial Immune Systems: Part I - Ba-si
 Theory and Appli
ations. Te
hni
al ReportTR-DCA 01/99, FEEC/UNICAMP, Brazil, De-
ember 1999.[5℄ Kalyanmoy Deb. Multi-Obje
tive Geneti
 Al-gorithms: Problem DiÆ
ulties and Constru
tionof Test Problems. Evolutionary Computation,7(3):205{230, Fall 1999.[6℄ Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal,and T. Meyarivan. A Fast and Elitist Multiobje
-tive Geneti
 Algorithm: NSGA{II. IEEE Trans-a
tions on Evolutionary Computation, 6(2):182{197, April 2002.[7℄ J. D. Farmer, N. H. Pa
kard, and A. S. Perelson.The Immune System, Adaptation, and Ma
hineLearning. Physi
a D, 22:187{204, 1986.[8℄ Carlos M. Fonse
a and Peter J. Fleming. Ge-neti
 Algorithms for Multiobje
tive Optimiza-tion: Formulation, Dis
ussion and Generaliza-tion. In Stephanie Forrest, editor, Pro
eedings ofthe Fifth International Conferen
e on Geneti
 Al-gorithms, pages 416{423, San Mateo, California,1993. Morgan Kau�man Publishers.[9℄ Stephanie Forrest and Steven A. Hofmeyr. Im-munology as Information Pro
essing. In L.A.Segel and I. Cohen, editors, Design Prin
iples forthe Immune System and Other Distributed Au-tonomous Systems, Santa Fe Institute Studies inthe S
ien
es of Complexity, pages 361{387. Ox-ford University Press, 2000.[10℄ Steven A. Frank. The Design of Natural and Ar-ti�
ial Adaptive Systems. A
ademi
 Press, NewYork, 1996.[11℄ John E. Hunt and Denise E. Cooke. An adap-tative, distributed learning systems based on theimmune system. In Pro
eedings of the IEEE In-ternational Conferen
e on Systems, Man and Cy-bernati
s, pages 2494{2499, 1995.[12℄ Hajime Kita, Yasuyuki Yabumoto, Naoki Mori,and Yoshikazu Nishikawa. Multi-Obje
tive Op-timization by Means of the Thermodynami
alGeneti
 Algorithm. In Hans-Mi
hael Voigt,Werner Ebeling, Ingo Re
henberg, and Hans-Paul S
hwefel, editors, Parallel Problem Solvingfrom Nature|PPSN IV, Le
ture Notes in Com-puter S
ien
e, pages 504{512, Berlin, Germany,September 1996. Springer-Verlag.

[13℄ Joshua D. Knowles and David W. Corne. Ap-proximating the Nondominated Front Using thePareto Ar
hived Evolution Strategy. Evolution-ary Computation, 8(2):149{172, 2000.[14℄ Frank Kursawe. A Variant of Evolution Strategiesfor Ve
tor Optimization. In H. P. S
hwefel andR. M�anner, editors, Parallel Problem Solving fromNature. 1st Workshop, PPSN I, volume 496 ofLe
ture Notes in Computer S
ien
e, pages 193{197, Berlin, Germany, o
t 1991. Springer-Verlag.[15℄ Andrzej Osy
zka. Multi
riteria optimization forengineering design. In John S. Gero, editor,Design Optimization, pages 193{227. A
ademi
Press, 1985.[16℄ Vilfredo Pareto. Cours D'E
onomie Politique,volume I and II. F. Rouge, Lausanne, 1896.[17℄ J. David S
ha�er. Multiple Obje
tive Optimiza-tion with Ve
tor Evaluated Geneti
 Algorithms.PhD thesis, Vanderbilt University, 1984.[18℄ Jason R. S
hott. Fault Tolerant Design UsingSingle and Multi
riteria Geneti
 Algorithm Op-timization. Master's thesis, Department of Aero-nauti
s and Astronauti
s, Massa
husetts Instituteof Te
hnology, Cambridge, Massa
husetts, May1995.[19℄ N. Srinivas and Kalyanmoy Deb. Multiobje
-tive Optimization Using Nondominated Sorting inGeneti
 Algorithms. Evolutionary Computation,2(3):221{248, Fall 1994.[20℄ David A. Van Veldhuizen and Gary B. Lam-ont. MOEA Test Suite Generation, Design &Use. In Annie S. Wu, editor, Pro
eedings ofthe 1999 Geneti
 and Evolutionary ComputationConferen
e. Workshop Program, pages 113{114,Orlando, Florida, July 1999.[21℄ R�emy Viennet, Christian Fontiex, and Ivan Mar
.NewMulti
riteria Optimization Method Based onthe Use of a Diploid Geneti
 Algorithm: Exampleof an Industrial Problem. In J. M. Alliot, E. Lut-ton, E. Ronald, M. S
hoenauer, and D. Snyers,editors, Pro
eedings of Arti�
ial Evolution (Euro-pean Conferen
e, sele
ted papers), pages 120{127,Brest, Fran
e, September 1995. Springer-Verlag.[22℄ E
kart Zitzler, Kalyanmoy Deb, and LotharThiele. Comparison of Multiobje
tive Evolution-ary Algorithms: Empiri
al Results. EvolutionaryComputation, 8(2):173{195, Summer 2000.

Immunocomputing for Complex Interval Objects

Svetlana P. Sokolova, Ludmila A. Sokolova

St. Petersburg Institute for Informatics and Automation,
Russian Academy of Sciences,

14-line 39, St. Petersburg, 199178, Russia

Abstract

This paper provides a further development of the
Immunocomputing (IC) approach to the class of
complex objects with parameter uncertainty of
the interval type. By using the rules and
nomenclature of interval mathematics the
singular value decomposition (SVD) of interval
matrices, procedures for supervised learning,
unsupervised learning, classification and
presentation of the results of research in IC shape
space have been further developed. This paper
includes examples of Specific Interval Artificial
Immune Systems for Surveillance of the Plague
and Security Systems.

1 Introduction
A new computational technique, called the Artificial
Immune Systems (AIS), base on the principles established
for the immune system, can learn new information, recall
previously learned information, and perform pattern
recognition in a highly decentralized fashion. AISs offer
powerful and robust information processing capabilities
for solving complex problems. A rigorous mathematical
basis of AIS based on the biological prototype of immune
network and the notations of formal protein and formal
immune network have been proposed (Tarakanov, 2000,
2001, 2002). These mathematical models have been
reffered, as formal immune system, or immunocomputing
(IC). This approach has already been applied in several
specific problems, such as monitoring of the natural
plague foci (Tarakanov, Sokolova, 2000), intelligent
security systems (Sokolova, 2000), etc.
Development of specific applications has shown the
exsistence of extensive groups of biological, economical
and natural factors, for which the measured values of the
state vectors are often known with interval uncertainty.
This uncertainty has a non-static nature, or there is not
enough information in order to refer it to one of the group
of random processes. The parametric uncertainties are
characterized by a relationship of the true values of the
parameters of an object to intervals with known
boundaries. Actually the interval model of a system
mirrors a real situation with the information on values of

its parameters, when a priori only the boundaries of
intervals are known. Therefore, using the rules and
nomenclature of interval mathematics we can represent it
as mathematical models. The interval space has the
following mathematical characteristics: the
incompleteness of the algebraic and the ordinal structure;
the lack of a rigorous distributivity (Alefeld, 1983,
Neumaier, 1990, Shary, 1985). These characteristics,
make the resolution of interval space uncertainties highly
complicated. Its concept, as a rule, is NP-hard.
Consequently, computer solutions of inner and outer
estimation of these concepts in the interval analysis are
necessary to simplify the process.
This paper provides a further development of the
Immunocomputing approach on the class of objects with
parameter uncertainty of interval type. The concept of a
solution set of singular values for an interval matrix,
singular value decomposition of interval matrices,
procedures for supervised learning, unsupervised
learning, classification and presentation of the results of
research into characteristics of interval objects on shape
space are developed. This includes examples of Specific
Interval Artificial Immune Systems for Surveillance the
Plague and Security Systems.

2 Mathematical Basis

2.1 General Approach
We will use the following notations: Rm, Rm×m –
correspodingly the space of real vectors U with m
components and the space of real m×m matrices A. IRm is
the set of interval vectors [U]

[U] = [U− , U+] = { U∈ Rm |U− ≤ U ≤ U+} , U− ≤ U+

with m components and IRm×m is the set of interval
matrices

[A]=[A− , A+] = { A∈ Rm×m |A− ≤ A ≤A+} , A− ≤ A+,

all inequalities are defined componentwise. Real interval
coefficients of [A] are:([aij], i,j=1, ,m) =([aij

−, aij
+]),

aij

−,
aij

+ - lower and upper bounds of intervals. For U ⊆ Rm the
intervall hull (U) is defined by

(U) = ∩ {[υ]∈ IRm | U⊆ [υ]} .

Let a real valued interval matrix [A]∈ IRm×n is given. We
shall understand the interval matrix [A] as a set of real
valued matrices of dimension m × n, for which

{A| (∀ A ∈ [A])}.

According to (Tarakanov, 2000) any unit vector U with m
real-valued components

U= [u1, …, um]T, UUT = 1,

can be considered as a special kind of Formal Peptide
(FP) with m−1 links. Binding energy between any pair of
such FPs: {U, V}, of the dimensions (m×1)and (n×1),
correspondingly, for given [A]∈ IRm×n is been defined by a
interval bilinear form:

[ω]=−UT[A]V, (1)

where [ω]∈ IR1, [ω] = [ω−, ω+] = {ω ∈ R1 |ω− ≤ ω ≤ ω +} ,
ω− ≤ ω+. Binding energy ω ∈ R1 for ∀ A ∈ [A] is been
defined by a bilinear form:

ω = − UTAV, (2)

where A∈ Rn×m. As it is known that extreme values of the
bilinear form (2) are determined by the so-called Singular
Value Decomposition (SVD) of the matrix A∈ Rn×m:

A = s1U1V1
T+ s2U2V2

T + …..+spUpVp
T, (3)

where si, i = 1,…, p - are singular values of the matrix
∀ A ∈ [A], Ui, Vi, i = 1,…, p - its left and right singular
vectors, p - rank of the matrix A. These singular values
and vectors satisfy the following bindings:

s1 ≥ s2≥…sp ≥ 0, si = Ui
TAVi, Vi

TVi = 1, Ui
TUi = 1, i =

1,…,p.

Let [A] ∈ IR n×m. Given an interval matrix [A] ∈ IR n×m,
we look for interval quantities [s1] ∈ IR, [U]∈ IRm, [V]∈
IRn satisfying the following properties:
• [s1] contains an maximal singular value of each

matrix ∀ A ∈ [A];
• for each of these singular values [U]∈ IRm, [V]∈ IRn

contain at least one corresponding left and right
singular vectors.

Below we will consider two approaches of computing the
singular value of the interval matrix [A]:center approach
and adaptive approach.

2.2 Center Approach
Assume, that the interval matrix [A] can be presented as
[A] =[AC−∆, AC+∆], AC = mid ([A]), mid[aij] = aij

−
+0.5(aij

− − aij
+) is the midpoint of [aij], AC ∈ R n×m, ∆ ≥0,

∆.∈ R n×m. The midpoint of the interval matrices is
defined componentwise. Computing the singular values of
the interval matrix [A] can be done by calculating bounds
on the eigenvalues of the symmetric interval matrix [B]=
[A]T[A] (Deif, 1991). However, such an approach
overestimates the true bounds. The latter are better
obtained directly from the eigenvalue problem for
matrices AAT, A ∈ [A] (Deif, 1991). Given a central
matrix AC ∈ R n×m, find for interval matrix [A] ={ A: |

A−AC| ≤ ∆A} . (Here and in sequel, the absolute value |⋅|
and the inequality sign �≤� are understood
componentwise). A description of the set of singular
values
Σ = { s1: ATAx = s1

2x, x≠ 0, A∈ [A]} .

In (Deif, 1991) the solution set has been received in
analytic form. Let the matrix S1

i is a diagonal matrix of
the signs of the components of xi, while S2

i represents the
signs of those of the matrix 2 ACxi +δAxi, where |δAxi| < 2|
ACxi|. Then the squared singular values si

2 of AC + δA,

∀ |δA| ≤ ∆A, range the interval
[si

2((Ac)TAC – 2(S1
i∆ATS2

iAC)sym + S1
i∆AT∆AS1

i), si
2((Ac)TAC

+ 2(S1
i∆ATS2

iAC)sym + S1
i∆AT∆AS1

i)],
where Bsym denotes the symmetric part of a matrix B.

2.3 Adaptive Approach
Case 1. Let [A] ∈ IRn×m – interval matrix. Then the
singular values of [A] are eigenvalues of the next matrix
[B]∈ IR (n+m)×(n+m), [B] = |B1, B2|, where B1, B2 – are
colums, B1 = |0, [A]| T, B2 = |[A]T, 0|T.

Find a description of the eigenpair set
Σ = { (λ, x)∈ Rn+m+1| Bx = λx, x ≠ 0, B ∈ [B]} .

Then we use the function (Mayer, 1992)
F{ (∆X, ∆Λ)T} = −R { ([B]−λΕ)x, Ix−1} T+{Ε−RG}{ (∆X,

∆Λ)T} ,

where ∆X∈ IRn+m, ∆Λ∈ IR1, E, I-unit matrix and vector, G
={ G1, G2} , G1 ={ ([B]−λΕ), IT} , G2 ={−∆X−x, 0}T. If the
enclosure holds

F{ (∆X, ∆Λ)T}⊆ (∆X, ∆Λ)T, (5)

then an eigenpair [λ] , [x] of [B] lies within
[λ] ∈ λ + ∆Λ, [x] ∈ x + ∆X.

In this case we calculate floating point approximations λi,
i = 1, …, (n+m) for the eigenvaluees of [B]∈ IR
(n+m)×(n+m), with the shifted QR algorithm. Consequently,
we can iterate accoding to

(∆X, ∆Λ) (k+1) = F(∆ X, ∆Λ (k)), k = 0,1,2,…,

∆X (0) =x, ∆Λ =λ,

until (5) holds.
Case 2. [A] ∈ IRn×m – interval matrix. Find a description
of solution set of maximal singular value, left and right
singular vectors for an interval matrix [A]:

Σ P ={(s1, U, V) ∈ Rm+n+1, s1∈ R1, U∈ Rm, V∈ Rn: AU
= sV, ATV = sU, VTV= 1, UTU = 1, ∀ A∈ [A], A with
property Ρ}, (4)

where Ρ is some fixed property such as symmetry, skew-
symmetry, Toeplitz form, etc.. For example, let interval
matrix [A] ∈ IRm × m with [aij] =[aji] for i,j = 1,…,m. The
set of matrices

{ Asym }={ A∈ Rm×m | A∈ [A], A symmetric}

is called a symmetric interval matrix. { Asym } ∉ IRm× m is
not interval matrix in the usual sense. { Asym }⊆ [A] and
{ Asym }= [A] if and only if aij

- = aij
+ for i,j = 1,…, m, i≠j.

The aforementioned solution set is
Σ sym ={(s1,U, V) ∈ Rm+n+1, s1∈ R1, U∈ Rm, V∈ Rn: AU

= sV, ATV = sU, VTV = 1, UTU= 1, A = AT ∈ [A]} . (6)

Singular value decomposition (SVD) of interval matrix
includes the following procedures:
Procedure 1. Definition of the set (4) of maximal singular
values s1 and corresponding left and right singular vectors
for a real (a thin) matrix ∀ A∈[A].
For definition of maximal singular value s1 and the left
and right singular vectors U and V, corresponding to the
s1, the rather simple and reliable scheme and deflation
method have been used (Tarakanov, 2000):

UT
(k+1) = VT

(k)A, V(k+1) = AU(k+1)
sk = Uk

TAVk, |sk+1 −sk| ≤ε, (7)
where k=0,1,2,... - is the number of iteration, ε - the given
precision of calculation. It can be shown, that for arbitrary
unit vectors V(0) , U(0) iterations by scheme (7) converge
in general case to the singular vectors U, V corresponding
to the maximal singular value s1= VTAU. Calculate the
interval hull for Σ P (4)

 Σ P = {[s1], [U1],[V1]}.
Then using deflation method, the next matrix

A(p) = A(p-1) – sp-1Up-1Vp-1
T (8)

is formed on the step p, and its maximal singular value sp
and corresponding singular vectors Up, Vp are determined
by the scheme (7). Calculate the interval hulles for Σ P

p

 Σ P
p = {[sp], [Up],[Vp]}.

Procedure 2. Definition of the intervall hulles for the sets
of singular values and right and left singular vectors of
interval matrix [A]. We define the matrix B∈ Rm+n+2 for
∀ A∈ [A] by (Alefeld, 1987):

B = { B1, B2, B3, B4} , (9)

where Bi, i = 1, 2, 3, 4 the columns of corresponding
dimensions

B1 = | A, -sIn, 2UT, 0|T, B2 = |-sIm, AT, 0, 2VT|T,

B3 = | -V, 0, 0, 0|T, B4 = |0, -U, 0, 0|T

and the vectors ν∈ Rm+n+2, r ∈ Rm+n+2 and f(ν)∈ Rm+n+2 by
ν =|∆U, ∆V, ∆s, ∆s|T, r =|sV –AU, sU – ATV, 1-UTU,

1-VTV|T,

f(ν) =|∆s∆U, ∆s∆V,-∆UT∆U,-∆VT∆V|T, (10)

where A∈[A], s, U, V –thereafter the maximal singular
value and left and right singular vectors, the errors are
equal ∆s = s-s’, ∆U = U – U’, ∆V = V – V’, ∆s∈ R1.
Let ν∈ Rm+n+2, [ν]∈ IRm+n+2. As it is shown in (Alefeld,
1987) the matrix B is nonsingular. Assume that, L is an
approximation to the inverse of B or the exact inverse of
B itself. Consider

[F] = Lr + (E-LB)[ν] + Lf([ν]) (11)

(E � unit matrix of corresponding dimention).
If the enclosure

[F’] ⊆ [ν ’], for [ν ’] ⊆ IRm+n+2 (12)

holds, then ([s],[U],[V]) of [A] lies within
[s] ∈ s + ∆s’, [U] ∈ U + ∆U’, [V] ∈ V + ∆V’. (13)

Consequently, we can iterate accoding to
(∆ν(k+1)) = F(∆ν(k)), k = 0,1,2,…, ∆ν(0) = ν, (14)

until (12) holds.
Now the following algorithm computes interval singular
value [s], left and right singular vectors [U], [V]:

• compute with iterations by scheme (7) maximal
singular value s1 and the corresponding left and
right singular vectors U1, V1 for any A∈[A];

• compute the interval hulle for Σ P (4);

• calculate matrices B, L;

• iterate accoding to (14);

• calculate (13).

Obtained results of SVD of interval matrices were used
for development of Pattern Recognition procedures
(Tarakanov, 2000) for Interval Aftificial Immune Systems
for Surveillance the Plague and Security Systems.

3 Interval AIS for Surveillance the Plague
Natural plague foci in the former soviet state Kazakhstan
cover an area of 130 million hectares and over the past 50
years they have been considered the most active plague
foci in the world. Recently, local and foreign workers
have increased the level of human activity in the natural
foci regions, often in connection with an intensive
exploitation of natural resources (e.g. gas and oil). These
activities are often organized by multinational companies,
which increase the probability of plague cases being
exported abroad.
Plague foci in Kazakhstan covering vast territories are
characterized by different regulation mechanisms at the
population species and community (biocenotic) levels.
The plague epizootic process is a complex
multicomponent dynamic system. The behavior of
particular subsystems of the plague epizootic triad (agent-
host-vector), the entire epizootic process in foci taking
into consideration the complicated interrelations of the
above subsystems have been investigated by
microbiologists, biologists, epidemiologists, etc (Ageyev,
1975, Aikimbayev, 1994, Aubakirov, 1990,�) and
consequently, considerable experimental material has
been accumulated on population, organism and cellular
levels.
For the first time, mathematical models have now been
obtained (Marshall, et al., 2001) which show the
dynamics of interactive stray-host relationship on

population level in the plague triad. This solved the
problem of structure and parametric identification in a
group of non-linear stochastic differential equations
taking into account the delay and influence of external
factors as an additive disturbance with defined statistical
characteristics. The results of simulation modelling were
obtained and the results of digital experiments were
compared with real data.
A new qualitative approach to the solution of the task of
prediction of epizootic processes in natural plague foci
was suggested (Tarakanov, Sokolova et al., 2000), using
the mathematical basis of AIS for its solution. As was
mentioned above, it was based on singular value
decomposition (SVD) in combination with the deflation
method, the binding energy between a pair of formal
peptides. The characteristics of SVD are its quick
convergence and robustness, which allows a considerable
quantity of spatially-temporal series (45 temporal series)
characterizing the condition of triad on the different levels
for the solving of the prediction task. Using procedures
for supervised learning, unsupervised learning,
classification and presentation of the results of research in
IC shape space. The comparative analysis of this
approach compared with traditional approaches has
demonstrated its considerable advantages. The results
from the creation of an Interval Artificial Immune System
for the surveillance of plague are shown below.

3.1 Significant Factors and the Characteristics
of Plague Processes

The plague epizootic process is a complex
multicomponent dynamic system which is characterized
by the interaction of particular subsystems of the plague
epizootic triad: agent-host-vector (Aikimbayev et al.,
1994, Aubakirov et al., 1990, Ageyev, 1975, Marshall et
al., 2001).
The state of the agent is characterized by the following
differential and diagnostic properties (Aikimbayev et al.,
1994). The Qualitative Properties: the morphology of
colonies the susceptibility to bacteriaphage
(Pokrovskaya�s homologous, heterologous
pseudotuberculous), glycerin, fermentation, rhamnose
fermentation, denitrification/nitrification,
pesticinogenecity, the susceptibility to pesticine, the
presence of VW-antigens, the need of growth factors. The
Quantitative Properties: the dependence on calcium at
370C, the presence of antigen of Fraction 1 in the reaction
of passive hemagglutination and immunoglobulin plague
erytrocytic diagnosticum, growth on the medium with
hemin, the integral property - virulence in white mice and
guinea-pigs (LD-50, DCL, according to Kerber�s
calculation). Most frequently, the state of the agent can
be characterized only by its numbers expressed through
indirect indices: the infestation of rodents, fleas or
samples (points) obtained not only from the given area
but also from the adjacent ones.
The state of fleas - vectors of a plague microbe - is
expressed (Ageyev, 1975) through their numbers, the

seasonal activity in attacking animals, through the sex and
age composition of the imaginal phase; as well as with the
help of mass emergence of imago on animals and in
openings of rodent burrows after hibernation, the
ovipositor (its beginning, peak and termination), the
larvae hatch (its beginning, mass numbers and
termination) and other indices. Other relative indices of
numerocity include the Index of abundance, the Index of
dominance, and the Index of fidelity, the total numbers of
fleas per hectare.
The state of hosts is characterized by the aggregate of
factors of influence, the set of characteristics at the
biocenotic, population and organism levels. This set is
included the following main factors: density of family
burrows, numbers of the hosts in different seasons, age
and sex structure of host population; reproduction,
mortality rate, dynamics of the level of infection
susceptibility, determination of age, sex and generative
state of hosts, etc.
The data characterizing the state of the members of the
epizootic triad are classified according to the season
(spring, summer, autumn), and sometimes (for example,
in case of reproductive indices) according to months and
even decades.
Weather, geographical and space characteristics constitute
the indices of external factors. The weather
characteristics are: the temperature of the air, soil and
precipitation, various hydrothermal coefficients, the
recurrence and the wind velocity according to compass
points, the recurrence of the types of atmospheric
circulation, the value of flood, etc.

3.2 The tasks of Pattern Recognition
The Development of AIS is important to recognise future
patterns of plague epizooyic process (Tarakanov,
Sokolova et al., 2000). AIS is intended to improve risk
analysis and underlying understanding of the space-time
dynamics of the plague in the Republic of Kazakhstan.
Moreover, AIS could be considered as a part of the
surveillance systems of re-emerging infectious diseases of
direct importance to the world community both through
tourism and other international activities. AIS could be
considered as a model system for processing surveillance
data of other dangerous infections in all parts of the
world.
Input data for the AIS are generated by the two main
blocks:

1) Base of surveillance data on the plague on
Akdala plain, including computerizing the
existing historic data, which is currently only
available on handwritten paper;

2) A set of mathematical models (stochastic,
interval and discrete) of the space-time dynamics
of the plague.

Based on the input data the main functions of the AIS
consist in evaluating a current danger of the plague

infection, as well as predicting a risk of infection in the
future. To perform such functions the core of the AIS
represents a pattern recognition block. Namely software
of this block emulate our IC approach to pattern
recognition.

3.2.1 Supervised Learning

To identify the state of the epizootic process we use the
input data to represent the state of host and vector, the
indices of external factors andthe space-time dynamics of
the plague.
Figure 1 and Table1 give input data for this task. Figure 1
shows numbers of infected sectors (vertical axe) over the
several years (horizontal axe) for the Akdala plain. Each
sector represents a square of 10×10 km. If the plague's
host (rodent), which has been caught in the sector,
contains a plague microbe, then the entire sector
considered as infected.

Figure 1: Space-time dynamics of the plague on the
Akdala plain

It worth to denote, that the number of infected sectors,
obtained by such a method, represents nowadays the most
appropriate indicator of epizootic process (Aikimbayev et
al., 1994).
A fragment of the surveillance data of the Akdala plague
focus during 11 years is represented in Table 1.

Table 1: A fragment of the database of surveillance the
plague

YEAR

1
9
7
6

1
9
7
7

1
9
7
8

.

.

.

.

1
9
8
7

1
9
8
8

p1 [2.5,
3.3]

[1.3,
1.8]

[5.2,
6.1]

 [4.0,
5.3]

[13.5,
15.8]

p2 [0.3,
0.7]

[4.1,
5.4]

[29,
-32]

 [4.4,
4.9]

[16.1,
18.6]

p3 [1.9,
2.3]

[1.1,
1.4]

[3.4,
3.9]

 [1.7,
1.8]

[4.8,
5.0]

: : : : : : :
p40 33.9 12.0 34.2 36.2 15.3
p41 1.3 10.0 11.7 0.7 7.7
p42 5.0 6.0 8.7 1.0 25.7
p43 0.3 0.0 0.0 1.3 12.0
p44 0.0 0.0 0.7 1.0 1.0
p45 5.0 4.0 2.7 2.3 1.0

The fragment includes 45 parameters p1-p45 such as:
number of rodents per square p1 (in autumn), p2 (in
spring), number of infected rodents per square p3 (in
autumn), p4 (in spring),�, total atmospheric precipitates�
p40(September), average height of the snow blanket - p41
(January) � 43(Mach), p44 (November) � p45(December).
As is shown in Table 1 such parameters as the number of
rodents and fleas per square, number of infected rodents
and fleas per square are interval. For example, the number
of rodent per square in autumn � p1 equal [2.5, 3.3] in
1996, [13.5, 15.8] in 1998 and so on, (Tarakanov,
Sokolova et al., 2000) are necessary for Pattern
Recognition for interval systems.
For decision the task of the identification of epizootic
process state we use four classes (Figure 1). Class 1 -
from 1975 to 1978 � the period of depression prior to the
epizootic process; Class 2 � from 1978 to 1979 �the
ascending branch of the epizootic process; Class 3 from
1979 to 1981 � the descending branch of the epizootic
process; Class 4 � from 1981 to 1985 the depression after
the epizootic process. The states of the epizootic triad on
the ascending branch and the descending branch of the
epizootic processes are different. Thus, learning patterns
are given by the years 1976-1981 and the task is to assign
the corresponding classes to the years 1984-1998. Classes
that have been assigned by the AIS to the years 1976-
1981 are considered as a test of the process.
When the beginning of epizootic process has been
predicted, the identification of the �power� epizootic
process has been accomplished. We use Figure 1 and
three classes: Class 1 � 1979, Class 2 � 1990, Class 3 �
1993. Thus, learning patterns are given by the years 1979,
1990, 1993 and the task is to assign the corresponding
classes to years 1994 �1998. In this case 19 space-time

rows characterized the state of agent are added in Table
1(p 46 � p 64).
Using Immunocomputing allowed us to solve the tasks of
host (large gerbil) and vector (fleas) number prognostics.
For this purpose we use the annual (spring, autumn)
space-time dynamics of the plague numbers
representatives on Figure 2.

Figure 2: Annual space-time dynamics of the plague
numbers

According to the immunocomputing approach the
aforementioned tasks are solved as follows.

Foldering vectors to matrices

Fold every column Ryear of Table 1 (vector of the
dimension 45×1) to a matrix Ayear of the dimension 9×5.
As is obvious from Table 1 any elements Ryear are interval
elements so the matrix Ayear also is interval.

Learning

Form matrices [A1], [A2], [A3],, [A4] for the classes 1,2,3,4
correspondingly:
[A1] = {[A1975], [A1976], [A1977], [A1978]} ;

[A2] = {[A1978], [A1979]} ;

[A3] = {[A1979], [A1980], [A1980], [A1981]} ;

[A4] = {[A1981], [A1982], [A1983], [A1984], [A1985]} ,

where {[S]} = { infS, sup S}

and midpoint mid[Ai] of interval matrices [Ai], i = 1,2,3,4.

Using the computing prosedures of Part 2 we compute
their interval singular vectors:

{U1,V1} – for [A1], {U2,V2} – for [A2]
{U3,V3} – for [A3], {U4,V4} - for [A4].

Recognition

.
2

AA
A

,AA

,
2

AA
A

19781977
1

19792

19781977
1

+=

=

+=

Compute four values of the binding energy for every
input pattern [Ayear] (upper case T designates a symbol of
the transposing):

[ω1]= UT
1[Ayear]V1, [ω2]= UT

2[Ayear]V2,

[ω3]= UT
3[Ayear]V3, [ω4]= UT

4[Ayear]V4.

Determine the means of the minimum binding energy for
every class:

ω = minω∈[ω] max ωA∈[A]

Determine the class to be found by the minimal value of
the binding energy:

k:ωk = min {ω1,ω2,ω3,ω}.
The results of the recognition are showed in Table 2,
where the minimal values of the energy are underlined.
According to Figure 2, the classes that have been
recognized could be treated also in the last column of
Table 2 as a risk level of the plague infection.

Table 2: Results of the recognition

YEA
R

CLA
SS
by

EXP-
ERT

S

- ωωωω1 - ωωωω2 - ωωωω3 CLA-
SS

by
IAIS

RISK
of

INFEC-
TION

1976 1 138 13 126 1 mid
1977 1 133- 18 113 1 mid

: : : : : : :
1985 141 10 148 3 low
1986 152- 66- 150- 1 mid
1987 174- 182 171 2 high
1988 197- 493- 183 2 high

3.2.2 Unsupervised Learning

Consider the interval matrix [A]= { [X1],... ,[Xm]} T of
dimension m× n formed by m interval vectors [X1], ...,
[Xm]. Using the results of Part 2 calculate the SVD of this
interval matrix:

[A] ⊆ [s1][U1][V1]T + [s2][U2][V2]T + …., (15)
where [s1], [s2] are the first two interval singular values,
and [V1], [V2] are the interval right singular vectors.
According to (Tarakanov, 1999) there can be established
a rigorous correspondence between vector and Formal
Peptide (FP). So, consider two FPs as antibodies: {FP-1,
FP-2}, which are corresponded to vectors [V1], [V2].
Consider also eleven FPs: {FP1 , ... , FP11}, which are
corresponded to the strings of the matrix A (columns of
Table1). Then every string Ai, which represents the
number of year i =1,...,11, can be mapped to the 2 values
{x1i , x2i} of the binding energy between FPi and two
antibodies :
[x1i] = [ω(FP-1, FPi)], x1i = min{ x1i,: Ai ∈[Ai]}

A n n u a l

0

20

40

60

80

100

120

140

160

180

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

0

2

4

6

8

10

12

14

16

18

20

numbers of
infected
sectors

numbers of
fleas

 numbers of
large gerbils

[x2i] = [ω(FP-2, FPi),. x2i = min{ x2i,: Ai ∈[Ai]}
The obtained results are given in Table 3.

Table 3: Classification of the years by a shape space of
the IAIS

YEAR x1 x2 CLAS
S

RISK of
INFECTI

ON
1976 0.126 0.359 C2
1977 0.113 0.337 C3
1978 0.194 0.313 C1
1979 0.5820 -0.261 A High

: : : : :
1986 0.197 0.292 C1
1987 0.348 0.188 B Mid
1988 0.699 -0.366 A High

The results presented in this Section show, that
Immunocomputing is rather powerful, robust and flexible
approach to complex biological systems with interval data
such as Natural Plague foci.

4 Interval AIS for Security System
The protection of the person and protection of property is
always one of the main problems facing a society during
its historical development as these questions are most
closely connected to one of the basic instincts of the
person - an instinct of self-preservation.
Responsibility for the protection and also for the
prevention of criminal activity is the responsibility of the
state through law enforcement bodies and the justice
system.
The protection of official buildings, industrial enterprises,
banks, places of retail trade, homes etc. often utilizes
security systems. These systems have the all-
characteristic indications of complex systems:

- large number of the interconnected elements,
- basic indeterminacy from of indefinity of the

information about a potential criminal and his
operations;

- �human factor� connected with the necessity of
acceptance by the man of operating solutions;

- natural factors consisting in wide variety of
climatic conditions,

- natural and industrial parasites.
The analysis of domestic experience and foreign radiants
(C and K Systems, 1997, etc.) has shown, that
approximately 95 % of alarms are false. Many
malfunctions are caused by a device reacting to various
false indicators, which should be referred to as parasites.
The analysis of complex security systems has shown what

it is often impossible to determine the reasons for a
malfunctioning of the signal system.
The use of the IC approach for an intelligent technique of
analysis of non-standard alarm information has been
developed and an Interval AIS for Security System (ISS)
for the complex objects has been constructed (Sokolova et
al., 2000). It has considerably lowered the number of
malfunctions of signal security systems.
ISS requires the realization of the following functions:

- state estimation of the complex objects and
analysis of the non-standard alarm information
on the basis of the mechanism of information
processing;

- implementation of procedures of supervised and
unsupervised learning;

- implementation of pattern recognition
procedures of the non-standard alarm
information in the shape space of IC.

Passive infra-red gauges (PIR-detectors) have received a
wide circulation and are one of the basic means of the
signal system for protection of premises, areas, passes,
corridors etc. A passive principle of action, i.e. the
absence of any radiation, makes this method absolutely
harmless to the person who is in the zone of its action. It
is also used for the protection of exhibits, for example, in
a museum exhibition of ancient manuscripts, fabrics and
other fragile and easily destroyed objects. The principle of
action of a PIR-detector is based on measurement of the
difference in temperatures of the person and the
surrounding environmental surface (walls, a floor and
furniture) premises witrhin the visibility range of the
optics of the device.
The main failing of PIR-detectors is the difficulty of
identifying the point of penetration, and the size of an
intruder. Identifying the point of penetration is necessary
for an effective reaction by security staff. The correct
estimation of the size of the intruder can sharply reduce
the number of false alarms. The cause of an alarm can be
various animal (cat and dog), left by the owners in a
location. The mode of creation of the open information
channel for each feeler of the PIR-detector with matrices
of sensitive elements 4×4, 8×8, 16×16 is applied for
elimination of this shortfall ininformation. Such devices
permit identification of the point of penetration of the
intruder and sharply reduce the number of false alarms
from the signal system. Depending on the means used for
detecting intrusions, the corresponding factors may accept
the values appropriate logic 0 or 1 (threshold algorithms)
or to change in any fixed interval (for example, in a range
from 0 up to 255 at application of 8-bit analog-digital
converters).
Using PIR-detectors with a through information channel it
it is possible to estimate the route an intruder is taking
into a protected zone. Accordingly, having such
information, will enable security staff to define tactics to

identify his objective and prevent the escape of the
intruder.
Let's consider that identification of the point of
penetration in a guarded zone and the possible route to of
an intruder to his objective are carried out with the help of
PIR-detector with a matrix 4×4 and a through
information channel. Let's assume, that in the fixed
instants with application space mechanical, or optical
scanning the alarming information from the PIR-detector
with a matrix 4×4 is obtained, i.e. the vectors of values of
indications of dimension 16×1 are obtained thereafter in
times t1, t2, t3:

X1 = [1,0.1,0.4,1,1,1,0.2,1,0.1,1,1,0.7,0.3,0.8,1,0.2]T,

X2 = [0.1,0.6,0.2,1,1,1,0.4,1,0.1,1,1,0.7,1,0.8,1,1]T,

X3= [1,0.1,0.8,1,1,0.5,1,1,0.1,1,1,0.4,0.2,0.4,1,0.5]T.

On the basis of the obtained information and in view
of judgement of the expert the learning sampling of
alarming situations as the Table 4 is formed.

Table 4: Learning sampling by results of the non-standard

alarming situations analysis.

NUMBER VALUES OF
INDICATIONS

CLASS

 x1 X2 x3 K

x16

1 1 0,3 1 1 1

2 0,1 0,6 1 1 2

3 0,2 0,8 0,9 0,7 3

4 0,5 1 0,7 0,1 4

N 1 1 0,5 0,1 1

From these received vectors we form the interval vector
[X] as

[X] = { X1, X2, X3} .

Then we use all steps of Supervised Learning,
Unsupervised Learning.
Applying interval AIS to Security Systems has allowed
the use of dynamic information about non-standard alarm
situations and considerably reduced the quantity of false
signals (Sokolova, ed. A.O. Tarakanov, 2000).

5 Conclusions
The results presented in this paper show, that
Immunocomputing is a powerful, robust and flexible
approach to complex systems with interval uncertainty.
Further development of the Immunocomputing approach
on class of interval objects requires the development of

additional simplified computer procedures of singular
decomposition of interval matrices, production of inner
and outer estimation of a set of solutions and the values of
interval bilinear forms that determine the binding energy
between formal proteins.

5.1.1 Acknowledgments

The authors acknowledge the support of the EOARD
under the project 2200 p �Development of Mathematical
Models of Immune Networks Intended for Information
Security Assurance�, EU Commission under INCO-
contract № ICA2-CT-2000-10048 �The plague of
Central-Asia an epidemiological study focusing on space-
time dynamics�.

5.1.2 References

V.S. Ageyev (1975). Parasitic contacts of rodents in the
river valleys of the desert zone of Kazakhstan and their
significance in the plague epizootology. Saratov, 3-19 pp.
(in Russian).
A.M. Aikimbayev, et al. (1994). Epidemiological Plague
surveillance in the Ural-Emba and Ustyurt Autonomous
Foci. Almaty, Gylym, (in Russian).
G. Alefeld, and J. Herzberger (1983). Introduction to
Interval Computation. New York, Academic Press.
G. Alefeld (1987). Rigorous Error Bounds for Singular
Values of a Matrix Using the Precise Scalar Product. In E.
Kaucher, U. Kulish and Ch.Ullrich, (eds.),
Computerarithmetic: 9-30. Teubner, and Stuttgart.
S.A. Aubakirov et al. (1990). Instruction on Landscape-
Epizootic Regionalization of Natural Plague Foci in
Central Asia and Kazakhstan. Alma-Ata, Gylym, (in
Russian).

D. Dasgupta, (ed.) (1999). Artificial immune systems and
their applications. Springer-Verlag, Berlin, New York.

G. Mayer (1992). Enclosures for eigenvalues and
eigenvectors. In L. Atanassova and J. Herzberger (eds.),
Computer Arithmetic and Enclosure Methods, North-
Holland, Elsevier Science Publishers B. V.

E.C. Marshall, A. Frigessi, N.C. Stenseth, M. Holden,
V.S. Ageyev and N.L. Klassovskiy (2001). Plague in
Kazakhstan: a Bayesian model for the temporal dynamics
of a vector-transmitted infectious disease. Oslo,
University of Oslo.
S.P. Shary (1995). Solving the linear interval tolerance
problem. Mathematics and Computers in Simulations, 39,
53 � 85.
S.P. Sokolova et al., (ed. A.O. Tarakanov) (2000).
Intelligent Security Systems. Almaty, Police Academy of
Kazakhstan (in Russian).

A.O. Tarakanov (2001). Information Security with
Formal Immune Networks. Proc. of the Methods, Models
and Architectures for Network Security (MMM-ACNS
2001), 115-126, St. Petersburg.

A.O. Tarakanov, S.P. Sokolova, B.A. Abramov and
A.M. Aikimbayev (2000). Immunocomputing of the
natural plague foci. Proc. of the 2000 Genetic and
Evolutionary Computation Conference (GECCO-2000),
38-41, Las Vegas, USA.

Hierarchy and Convergence of Immune Networks:
Basic Ideas and Preliminary Results

Leandro N. de Castro
Department of Computer and Electrical Engineering

Faculty of Computer and Electrical Engineering
State University of Campinas, Brazil.

lnunes@dca.fee.unciamp.br

Jon Timmis
Computing Laboratory

University of Kent at Canterbury, UK.
J.Timmis@ukc.ac.uk

Abstract

aiNet is an artificial immune network model
originally developed to perform automatic data
compression. Combined with graph theoretical
and statistical clustering techniques, aiNet is a
powerful data clustering and classification tool.
However, the original aiNet model suffers from
the lack of a well-defined stopping criterion and
an ad hoc approach to parameter initialization,
prior to the training process. This paper has two
main goals. First, by assessing convergence cri-
teria employed in a class of artificial neural net-
works, a suitable stopping criterion can be cre-
ated for aiNet. Secondly, the paper demonstrates
that through the use of a cooling schedule for
some of these user-defined parameters, it is not
only possible to reduce the importance of their
initial values, but also this leads to possible deri-
vation of a hierarchical tree of immune networks.
Due to the very limited space available, only the
basic ideas of a novel convergence criterion, and
an approach to develop a tree of aiNets will be
presented, together with an illustrative example.

1 INTRODUCTION
The emerging field of artificial immune systems (AIS)
has grown very rapidly in the last few years. The applica-
tions of AIS can be considered as very diverse, ranging
from autonomous navigation to data analysis (Dasgupta,
1999; de Castro & Timmis, 2002). Two immune network
models developed quite independently by Timmis (2000)
and de Castro & Von Zuben (2000) have been used as
alternative biologically motivated approaches with which
to perform data clustering.
Other, more well established biologically motivated para-
digms, widely used to perform data clustering are the self-
organizing neural networks, in particular the self-
organizing feature maps (SOFM) introduced by Kohonen
(1982). The SOFM, as originally proposed, is capable of
performing a dimensionality reduction of a set of input
data into a (usually) regular grid of output units. During
the SOFM learning process, ‘similar’ input data are

mapped into neighboring units in the output grid of the
network. By adopting a given metric to evaluate the simi-
larity among the input data, combined with the network
weight vectors (usually the Euclidean distance), at the end
of the learning process the output grid of the SOFM is
capable of preserving topological and metric relationships
contained within the input data set. Despite great poten-
tial, the original SOFM suffers from some limitations.
First, although the SOFM is capable of mapping similar
data items into neighboring units in the output grid, the
automatic inference of the number of clusters contained in
the data set is not a straightforward process. Second, the
determination of a suitable dimension for the output grid
is also not automatic. Finally, the mapping performed by
the SOFM does not account for any hierarchical structure
within the data set.
In order to alleviate some of these limitations of the origi-
nal SOFM, several variations have been proposed and
introduced in the standard algorithm. Among these are
methods for the automatic segmentation of clusters within
a trained SOFM via, for example, the U-matrix (Ultsch,
1995); algorithms to dynamically generate the network
architecture according to the input data set (Fritzke, 1994;
Cho, 1997; de Castro & Von Zuben, 1999); and the pro-
posal of hierarchical methods for growing neural network
trees (Adams et al., 1999; Costa & Netto, 1999).
The immune network model discussed in this paper was
introduced by de Castro and Von Zuben (2000), and
named aiNet (Artificial Immune NETwork). The main
role of the standard adaptive algorithm proposed for the
aiNet was to reduce data redundancy, whilst at the same
time extracting relevant information from the data set,
such as the spatial distribution of the inherent data clus-
ters. The network cells within aiNet are represented in a
space of same dimension as the input data, i.e. no dimen-
sionality reduction is performed, but the network size is
controlled based upon the immune network dynamic and
metadynamic processes (Varela et al., 1988). The network
cells represent an “internal image” of the input data set,
and therefore it became necessary to use additional tools
in order to automatically identify and separate clusters in
this network of cells. The authors employed the use of the
minimal spanning tree (MST), borrowed from graph the-
ory, as a useful mechanism with which to automatically
detect and separate the network clusters (de Castro & Von

mailto:lnunes@dca.fee.unciamp.br
mailto:J.Timmis@ukc.ac.uk

Zuben, 2001). In order to assess the performance of aiNet,
the authors applied the aiNet model to the well-known
two spirals problem (Fahlman & Lebiere, 1990) and also
to the chain link problem (Ultsch, 1995). Although these
datasets are composed of non-linearly separable clusters
of data (which cannot be automatically detected with the
standard SOFM), the inner-subset distance of a data point
is of orders of magnitude smaller than the inter-subset
distance. This makes the MST application very effective
at processing networks produced from aiNet, as aiNet
positions network cells in appropriate locations within the
space. Additionally, the number of clusters was low (only
two, in both cases) and their shapes very similar. In cases
where the number of clusters is high and their shapes are
non-uniform, the proposed MST approach for the aiNet
model still presents good results, but may not be capable
of solving the whole problem in a single run for a given
set of user-defined adaptive parameters.
This paper proposes two new theoretical results for the
aiNet algorithm. First, it proposes a convergence criterion
for the network iterative process that seeks to interrupt
learning when the capability of the network to represent
the input data degrades for a given network dimension.
Secondly, the paper introduces an automatic hierarchical
method to generate a tree of aiNets capable of detecting
clusters with less-uniform characteristics, alleviating the
problem of choosing initial values for some user-defined
parameters. This model was largely inspired by the hier-
archical variations proposed for the SOFM and referenced
above, in particular those by Adams et al. (1999) and by
Costa and Netto (1999).
This paper is organized as follows. Section 2 briefly dis-
cusses the problem of cluster analysis and competitive
learning. This is important to allow for a characterization
of aiNet and to provide a background for the (conver-
gence and hierarchical) methods to be proposed. Section 3
briefly reviews the aiNet learning algorithm. Section 4
proposes a convergence criterion for aiNet and Section 5
proposes the hierarchical approach for the generation of a
tree of aiNets. Section 6 illustrates the performance of the
methods proposed when applied to a simple benchmark
problem. The work is concluded in Section 7 with a dis-
cussion of the methods proposed and possible extensions
of this work and future trends for the aiNet algorithm.

2 CLUSTER ANALYSIS AND COM-
PETITIVE LEARNING

This work addresses the problem of detecting inherent
separations among subsets (clusters) of a given data set,
named generically Ag, in a shape-space governed by an
Euclidean distance. Note that inherent separation is used
here to emphasize that any separation detected by the
aiNet minimal spanning tree (Section 3.1) is going to
depend solely on interpoint distances within the resultant
network cells.
The partition of data into subsets, which are less hetero-
geneous than the primary set, has applications in several

domains, where the main goal is to get some insight of the
underlying structure of the data. Although several differ-
ent algorithms have already been proposed in the litera-
ture, no general framework has yet been presented. For
good surveys the interested reader might refer to Everitt
(1993) and Jain et al. (1999).
Clustering methods range from largely heuristic ap-
proaches to more formal procedures, and are commonly
divided into hierarchical and partitioning methods. The
discussion to be presented here focuses on the hierarchical
methods, whose limitations were sources of inspiration
for the improvements proposed in this paper. Traditional
optimization clustering techniques, such as k-means clus-
tering, discover the clusters in the data by optimizing the
initial cluster prototypes to reduce a cost function. The
most commonly used cost function is the mean squared
error (MSE), which is given by
MSE = ΣAg ||Ag – Abi*||2, (1)
where Ag is an input vector, and Abi* is the classifying
prototype such that
||Ag – Abi*|| ≤ ||Ag – Abi|| ∀i, (2)
where Abi are the prototypes, which in this case corre-
spond to the aiNet cells.
A major drawback of these clustering techniques is that
they require the pre-definition of the number of clusters to
be used, and are also sensitive to the initialization of the
prototypes.
Hierarchical clustering techniques provide a complete,
structured grouping of the input data set, going from all
objects being members of the same cluster, to several
clusters each containing a single datum object. The hier-
archical methods can be further subdivided into agglom-
erative and divisive strategies. Agglomerative methods
start with all objects having their own cluster and com-
bine clusters until a single cluster exists. In contrast, divi-
sive methods begin with all objects being members of the
same cluster and divide the clusters until every cluster has
just one object. The main problems with the hierarchical
methods are (1) undesired merging of objects cannot be
corrected at later stages; (2) memory usage required is
usually proportional to the square of the number of clus-
ters in the initial partition; and (3) the results may be hard
to interpret, particularly the case for large data sets.
Finally, in aiNet the input data are assumed unlabeled,
thus resulting in a type of competitive learning algorithm.
With competitive learning, clustering of the input data is
performed such that the MSE given by Eq. (1) is itera-
tively reduced. For each input datum (Ag), a winning unit
(the closest to the input, given a certain distance measure)
is found (Abi), and is moved towards the input vector
using the following updating rule:
Abi = Abi + γ(Ag – Abi), (3)
where γ is a learning rate.

3 aiNet DESCRIPTION
One of the most striking characteristics of the immune
system is its capability to recognize and eliminate harmful
invading micro-organisms (e.g., viruses, bacteria, and
parasites) or malfunctioning self cells (e.g., tumor and
cancer cells). Clonal selection and expansion is the most
accepted theory used to explain how the immune system
copes with these invading micro-organisms, broadly
named antigens. In brief, the clonal selection and expan-
sion theory states that when antigens invade an organism,
a subset of the immune cells capable of recognizing these
antigens proliferate and differentiate into active or mem-
ory cells (Burnet, 1959). The active cells have the primary
role of combating the invasion, while the memory cells
have long life spans. An interesting phenomenon that
occurs during the cellular proliferation is a mutational
event with high rates. This mutation process, together
with a strong selective force, ensures that the set of mem-
ory cells has improved capabilities of recognizing the
antigens. As the total number of immune cells contained
in an organism is limited and the number of possible in-
vaders is almost limitless, the immune system has to be
capable of generating enough cellular diversity. In addi-
tion, it has to be capable of extracting some general in-
formation (common patterns) contained in these invading
antigens so as to promote more effective responses in
cases of future expositions. This information extraction
process is a consequence of the mutation, selection and
maintenance of memory cells.
In contrast to clonal selection, the immune network theory
is often explored to describe how some components of the
immune system (cells and molecules) interact with one
another even in the absence of external stimuli. The im-
mune network hypothesizes that the immune system pre-
sents an intrinsic eigen-behavior. This suggests that self-
recognizing processes can ‘suppress’ the network dynam-
ics (activity), while the recognition of foreign micro-
organisms leads to cell proliferation and network activa-
tion (Jerne, 1974).
These two immune theories are the basis for the artificial
immune network (aiNet) model proposed by de Castro &
Von Zuben (2000, 2001). In aiNet, the recognition of an
input pattern (antigen) results in cell proliferation, muta-
tion and selection as suggested by the clonal selection
theory. The recognition of components of the network
itself results in the network suppression; a process simu-
lated by the elimination of all but one of the self-
recognizing cells. By following these two immune princi-
ples, the aiNet is capable of extracting relevant features
contained in a set of input data at the same time it elimi-
nates data redundancy.
Using a functional and high-level description, the aiNet
learning algorithm can be presented as follows. For a
detailed algorithm, the interested reader is invited to refer
to de Castro & Von Zuben (2001):
1. Initialization: create an initial random population of

network antibodies;

2. Antigenic presentation: for each antigenic pattern, do:
2.1 Clonal selection and expansion: for each net-

work element, determine its affinity with the an-
tigen presented. Select a number of high affinity
elements and reproduce (clone) them proportion-
ally to their affinity;

2.2 Affinity maturation: mutate each clone inversely
proportional to affinity. Re-select a number of
highest affinity clones and place them into a clo-
nal memory set;

2.3 Clonal interactions: determine the network inter-
actions (affinity) among all the elements of the
clonal memory set;

2.4 Clonal suppression: eliminate those memory
clones whose affinity is less than a pre-specified
threshold;

2.5 Metadynamics: eliminate all memory clones
whose affinity with the antigen is less than a pre-
defined threshold;

2.6 Network construction: incorporate the remaining
clones of the clonal memory with all network an-
tibodies, resulting in a matrix M of memory an-
tibodies;

3. Network interactions: determine the distance between
each pair of network antibodies and store these data in
a matrix D;

4. Network suppression: eliminate all network antibodies
whose affinity is less than a pre-specified threshold;

5. Diversity: introduce a number of randomly generated
cells into the network

Cycle: repeat Steps 2 to 5 until a pre-specified number of
iterations is performed.

3.1 EXTRACTING THE CLUSTERS
The aiNet learning algorithm described above was de-
signed to generate a reduced set of cells (according to the
suppression threshold – σs) representative of the spatial
distribution of the input data. After defining the set M of
cells’ coordinates, along with their corresponding distance
matrix D, it is necessary to interpret the resultant network
given by the 2-tuple 〈M, D〉. This includes the determina-
tion of the number of clusters contained in the resultant
network (indirectly in the data set) and the selection of
which network cells compose each of these detected clus-
ters.
The authors employed the minimal spanning tree (MST)
method as proposed by Zahn (1971) to detect clusters in a
trained aiNet. Basically, this method traces the MST
among the resultant cells in the network and searches for
inconsistent edges in the MST. In this case, inconsistency
refers to the ratio r, named inconsistency ratio, between
the length of a given edge and a number of neighbor
edges on both sides of the selected edge. The method
suggests that an edge that is much larger than the average
of nearby edges gives an indication of the existence of
more than one cluster in the data.

4 CONVERGENCE PROPERTIES
Motivated by the desire to introduce more rigorous stop-
ping criteria for immune networks, it was necessary to
study the convergence properties of aiNet. It was first
necessary to characterize which type of adaptation it per-
forms, and also to study techniques from cross-validation
theory, which is sometimes employed in supervised learn-
ing for neural networks.
As previously discussed , the aiNet learning algorithm has
two distinct, but interrelated, processing stages. In the
first stage, aiNet behaves in a clonal selection fashion,
and in the second stage, in a network-based form. The
clonal selection part follows the clonal selection algo-
rithm, named CLONALG, proposed by de Castro and
Von Zuben (2002). This algorithm can be considered as
an evolutionary-like algorithm as it is a population-based
search technique, where the individuals of the population
reproduce, their offspring suffer genetic variation and are
then subjected to selection. An interesting aspect of this
algorithm is that mutation is a guided process, aiming at
increasing the capability of recognition of the network
cells, in relation to the input data (antigens). The guided
mutation strategy follows the same competitive rule as
given by Eq. (3), and is found in self-organizing neural
networks, like the SOFM. The main difference with aiNet
is that the learning rate has a distinct value for each cell in
the network, and this rate is proportional to the distance
among the selected aiNet cells (and their respective
clones) and the current input datum (antigen). Thus, the
aiNet learning algorithm can be characterized as an evolu-
tionary algorithm with self-organizing learning.
This type of dynamics within the network, makes it very
difficult to formally prove the convergence properties of
aiNet. In the case of the SOFM, there are several works in
the literature regarding its equilibrium states and conver-
gence properties (Kohonen, 1982; Ritter & Schulten,
1988; Erwin et al., 1992). Although both networks, the
SOFM and aiNet, are self-organizing, several differences
between them can be highlighted. The SOFM assumes a
pre-defined neighborhood function among neurons, it
performs a dimensionality reduction of the input data and
it employs a cooling schedule for some parameters, such
as the learning rate and neighborhood radius. The use of
these cooling schedules for the learning rate and neigh-
borhood radius are fundamental for guaranteeing that the
SOFM will achieve a stationary convergent state. The
aiNet in contrast, performs a sort of greedy search for an
‘optimal learning rate’ for each selected network cell and
its clones, rather than iteratively cooling the learning rate.
Additionally, instead of an explicit neighborhood
function, the aiNet selects a set of k-nearest neighbors
(KNN) to a given input datum; these KNN are taken from
the first to the last iteration of the algorithm and is under-
taken in the affinity maturation stage of the algorithm.
Additionally, there is no cooling schedule applied to this
number of nearest neighbors.
From the viewpoint of an evolutionary-like behavior for
aiNet, convergence proof becomes an even more difficult

task. Evolutionary algorithms incorporate complex non-
linear stochastic processes, such that the theoretical con-
vergence analysis can only be performed using methods
like Markov chains, which introduce numerous assump-
tions in order to make the problem computationally trac-
table. The result is that the analysis of the modified algo-
rithm might not always correspond to its real behavior
(Buczak et al., 2001).
As the aiNet is both evolutionary and self-organizing, the
derivation of formal convergence and proof of stability
becomes very difficult. It was therefore decided to inves-
tigate convergence empirically, so as to derive a reason-
able convergence criterion for the network learning proc-
ess.

4.1 THE MSE AND NETWORK SIZE
Consider the simple problem of defining an aiNet to rep-
resent a Gaussian distribution composed of 100 data
points in ℜ 2. Assume a suppression threshold σs = 0.018,
which is not directly relevant to this analysis. Fig. 1 illus-
trates the relationship between the MSE, given by Eq. (1)
of the aiNet cells in relation to the input data (antigens)
and the number of cells in the network with respect to the
iterations. Although these curves cannot be said to typi-
cally represent the network pattern of behavior (there are
stochastic processes within the learning algorithm), they
serve to illustrate some interesting properties of the algo-
rithm. It can be observed that in the final iterations of the
algorithm, the number of cells in the network oscillates
between 13 and 16 with an approximate average of 15
units (right hand scale). It can also be noted that usually,
when a unit is pruned resulting in a dimension smaller
than the average dimension (15 units), the MSE tends to
increase. The explanation, in this case, is quite obvious:
the network is loosing its capability of representing the
input data set. In contrast, when another cell is inserted
into the network, it gains more potential to represent the
data set and thus, it tends to start reducing the error again.

0 50 100 150 200 250 300 350 400 450 500
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12
x 10

-3 MSE (solid line) / No. of Cells (dashed line)

Iteration

13

14

15

16

17

18

Figure 1: Relationship between the MSE given by Eq. (1) and
the number of cells in the network. The left-hand axis scale is
for the MSE (solid line); and the right-hand axis scale is for the

number of cells (dashed line). To facilitate the interpretation, the
first two iterations of the algorithm were not depicted.

Through experimentation, it was also possible to note that
the aiNet tends to stabilize around an average dimension
(15 in this case).

4.2 THE ROLE OF CROSS-VALIDATION IN
SUPERVISED LEARNING

Cross-validation is employed in supervised learning as an
approach to reduce over fitting. Over fitting is the term
used when a learning system has undergone too much
training and becomes unable to generalize when a new
validation set is presented (Prechelt, 1998). This behavior
can be easily observed by partitioning the data set into a
few subsets (e.g., learning and validation) and constantly
evaluating the network performance for the validation set
after a certain number of adaptation steps run with only
the learning set. Fig. 2 illustrates idealized curves for the
errors, where the curve represents the MSE for the learn-
ing and validation sets, with the optimum point in which
to stop training being illustrated. The problem with this
approach is that there is no typical behavior. Instead, real
situations, even for very simple problems, are much more
complex, presenting a great number of local optima, such
as the MSE curve depicted in Fig. 1 for the unsupervised
learning of aiNet.
In an attempt to prevent this behavior, several cross-
validation stopping criteria can be proposed for super-
vised learning (Prechelt, 1998). For example, training can
be stopped when the percentage ratio between the valida-
tion error and the smallest training error is greater than a
given threshold, a procedure called ‘generalization loss’
(GL). Another approach is to evaluate the training error
within a ‘window’ of k iterations. Here an evaluation
between how much the average training error has in-
creased in relation to the minimum error within this win-
dow of length k. Then the ratio between this value and GL
is determined. If this ratio is greater than a given thresh-
old, then training is stopped. In all cases, the network
weight set used is the one obtained before the criterion
indicated over fitting.
In the aiNet case, learning is unsupervised according to
Eq. (3), but the MSE among the best matching network
cells (winners) and the input data can be evaluated, as is
the case with the optimization clustering algorithms. As
illustrated in Fig. 1, the MSE during the learning process
tends to oscillate around an average value after a number
of iterations, in a way similar to the validation error for
supervised learning. Still, alike supervised learning, it
seems that the differences between the first and the fol-
lowing local optima of this function are not huge.

Learning (solid line) / Validation (dashed line)

Iterations

Figure 2: Idealized training and generalization error curves.

4.3 A STOPPING CRITERION FOR aiNet
Inspired by these cross-validation criteria and ideas, the
following stopping criterion for the aiNet learning algo-
rithm is proposed.
At each window of k iteration steps of aiNet, evaluate the
average error (MSEavk), the error at the last iteration of the
window (MSEendk), and the standard deviation of the error
within the window (MSEstdk), and store the minimal error
during the whole iterative process (MSEopt). Note, that as
learning is unsupervised, there is a single input data set
and thus, a single error is evaluated; no partition is per-
formed in the data set. The following stopping criterion is
proposed:
Stop the iterative process if
MSEendk > (MSEavk + MSEstdk) after iteration t – k.
where t is the iteration (time) index. The network memory
cells and their corresponding distances, 〈Mopt, Dopt〉, are
those that lead to the smallest error (MSEopt) during all the
learning process up to the stopping iteration.
The use of this stopping criterion can be justified as fol-
lows. If a normal distribution for the error behavior close
to its stationary state is assumed (the error can increase or
decrease in short amounts), then an error exceeding one
standard deviation above the average error within a win-
dow k may be regarded as a significant increase in the
error. In numerical terms, a normal distribution has ap-
proximately 68% of its observations within one standard
deviation of its mean. Thus, if the error at the end of the
window k is larger than one standard deviation of the
mean value of the window, it corresponds to an error rate
of approximately 68% larger than the average error of the
window k: this can be said to represent a significant in-
crease in error.
This observation suggests that the aiNet representation
capability of the input data is decreasing significantly, and
usually happens when the network learning capability is
close to its maximum (given its current dimension). Usu-
ally, if a novel cell is inserted into, or pruned from, the

network, then aiNet will have to reorganize the attribute
values of its cells in order to account for the modified
network structure. Also, the strong deterministic selective
procedure adopted (k-nearest neighbors in relation to the
input datum) together with the guided mutation rate, pro-
mote a greedy search around each network cell. This can
be compared to a gradient ascent (hill-climbing) search
(Salomon, 1998), and is a process that tends to be
monotonical as far as an appropriate learning rate and
network dimension are chosen. In aiNet, the learning rate
and network dimensions are dynamically adjusted, and
the search tends to perform steps in the opposite direction
of the gradient of the MSE among the best matching cells
and the given input datum.
This proposed stopping criterion has the property that it
may be slow to interrupt the iterative learning: this will
depend on how the learning error is oscillating. aiNet will
only stop when the network is significantly loosing its
capability of representing the data. However, it has the
advantage that it is local to the window k, but not ‘too
local’; meaning that it allows the learning algorithm to go
out of some local optima and to look for more ‘global
optima’ in which to stop the iterative process. Certainly,
the ‘brevity’ of the determined optima will depend upon
the length k of the window. Another advantage of the
process is that it looks for the best set of cells up to the
stopping iteration.
As with the cross-validation procedures, this method also
does not guarantee the convergence of the algorithm,
therefore a maximum number of iteration steps must be
defined. Another feature of this approach is that it as-
sumes that the network learning, though asymptotic close
to the optimal performance, suffers abrupt changes. These
are consequences of the network pruning/growing of
cells. If the performance of the algorithm were realisti-
cally asymptotic, then the convergence criterion would
never be met, as it requires a considerable variation in the
MSE evaluated. Indeed, this oscillating behavior was
observed in almost all experiments performed, making the
application of the proposed algorithm feasible.

5 A HIERARCHY OF aiNets
The method proposed in this section aims at enhancing
the clustering capability of aiNet, such that sub-clusters
can be detected within a previously defined cluster. It has
also been found that this approach alleviates the problem
of setting up the initial values for some user-defined
learning parameters. The algorithm is presented first, and
then its basic functioning is discussed.
The hierarchical algorithm for the aiNet operates as fol-
lows:
1. Parameter definition: define the initial values for the

relevant aiNet parameters σs (suppression threshold)
and r (inconsistency ratio), and set up the decaying
rate 0 < α < 1 for these parameters;

2. aiNet learning: run the aiNet learning algorithm (Sec-
tion 3) with the given parameters. The aiNet is said to
have converged after it meets the stopping criterion
proposed in Section 4. Note that, despite the window
size k = 20, this criterion does not require the defini-
tion of any parameter by the user;

3. Tree branching: each cluster detected by the MST
constructed from the resultant aiNet, generates an
offspring aiNet in the next level (or depth) of net-
works, i.e. a new branch of the tree;

4. Parameters updating: reduce σs and r, e.g. by geo-
metrically decreasing them by the factor α;

5. Offspring network evaluation: run the offspring net-
work (new branch of the tree) for the updated (re-
duced) parameters; each offspring network is run
with only the input data that it classifies. This means
that at each level (depth) of the tree of networks, the
aiNet responsible for classifying a given portion of
the data set is only subjected to these data;

6. Tree convergence: if the offspring network does not
detect a novel cluster, the process is halted, and the
tree of networks is completed. Each branch of the
tree represents a cluster and a sequence of branches
represents the hierarchy inherent to the data mapped
into these clusters. Else, while a given offspring net-
work (branch) of the tree is still capable of idenfying
more than one cluster, return to Step 4 and the proc-
ess continues until no new cluster can be identified.

The behavior of the algorithm can be explained as fol-
lows. The whole input data set is presented to the first
network, named root network. At the end of the learning
process, the root network is capable of identifying the
most relevant components of the data set by eliminating
the redundant ones and positioning the network cells in
the appropriate locations of the space. The MST method
is then applied with the ratio r of that network level (root),
and a certain number of clusters are identified. Each de-
tected cluster generates a new network at the same level,
branched in the root network. The input data is then
mapped into each of these networks and used to evaluate
their capabilities of detecting novel clusters within the
previously identified clusters (sub-networks). The sup-
pression threshold (σs) and inconsistency ratio (r) are
reduced by the factor α. By reducing (cooling) σs the
learning process of the offspring network becomes more
accurate in relation to its input data, i.e., each input datum
is represented more accuralty by a network cell or group
of cells. The reduction of σs forces the MSE among the
input data and the best matching cells to reduce. The
reduction (cooling) of r allows the network to draw out
less apparent clusters in the given sub-set of data. After
reducing both parameters, the aiNet learning algorithm is
run for each new branch (sub-network) of the tree, until
no offspring networks are generated.

6 AN ILLUSTRATIVE EXAMPLE
In order to illustrate the performance of the proposed
stopping criterion and hierarchical method, the algorithm
was applied to a multi-structured bi-dimensional artificial
data set. As originally proposed (de Castro & Von Zuben,
2000), the aiNet learning algorithm requires several pa-
rameters to be set up by the user. However, in later work,
the authors demonstrated empirically that the majority of
these parameters influence mainly the convergence time
of the algorithm, not the final network classification. The
following parameters (used in most of their simulations)
were adopted for the experiment described here: n = 4,
d = 10, r = 2.0 and ξ = 10%. For a full description of the
standard aiNet algorithm and its training parameters, the
reader is invited to refer to (de Castro & Von Zuben,
2001).
This multi-structured data was used to evaluate a hierar-
chical self-organizing map (Costa & Netto, 2001). The
data set illustrated in Fig. 3, is used to demonstrate that
even in the presence of very different pattern structures,
the proposed method is capable of detecting and separat-
ing clusters and, also, of indicating the intrinsic cluster
hierarchy. The number of patterns in each class (1 to 8) is
314, 100, 100, 100, 100, 10, 53 and 57 respectively.
Classes 2 to 5 were generated by multivariate Gaussian
probability distributions. Class 2 is completely enclosed
by a circular cluster (class 1). Class 1 is connected to class
5 by a bridge (class 6) that is a chain of intermediate ob-
jects.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
1 1

1

1

1

1

1

1
11 1

1

1

1

1

1

1
1

1

1

1 1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

11 1

1

1

1

1

1

1
1

1

1

1

1

11 1

11

1

11

1

1
1 1

111 1

1

1

1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

1

11

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

11

1

1

1

1

1

1

11

111

1

1

1
11

1

1

1

11

11

111

1 111
1

1

1
1

1
1

1

1

1

11

1

1

1

1

11

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1

1
1

1

1

1

11

1

1

1

11

1

1

1

1

1 1

1
1
1

1

1

1

1

1
1

1

1

1

1

1

1

11

1

11

111

1

1

1

1

1

1

1 1
1 1

1

1

11

1

1

1

1

1
1

1

1

1

1
1

1

11

11

11

1
1

1

11
1

1

1
1

1

1

1
1

11

1

1

1

1

1

1

1

11

1

1

1
1

1

1

1
1

1

1

1

1 1

1
1

1 1

1

11

1

1

1

1

1

1
1

1

1
1

1

11

1
1

1
1

1

1

1

22

2
22 2222222

2
2

2
2222

222
222 22

22 2
22

2
22
22

22
22 2

2 2
2 22
2

2 2
2 22 2222
2

22
2
2 22
222
2

2
22

2
222 2
22 2222
2

2

22
2
2 2
2
22

2
2

2
2 22
2
2

3
3 3

3

3
3 3

33
33

3

3

33

33
3 33

3
3 33 3333

3

3333
3

33

3

333 33
3 33333

3

3
3

3
3 3

33
33

3

3

33

3

333

3
3

33

3 33

3
333333

3
3

3 3
3
3

33

3 3

3
3 3

3

3 3
33
3

3

4

4

444 44
44

4 4
444

44

4
4 4444

4

4 44444
444

4 4
4

4
44
44

4
4

444
4

4
4

44

4

444 4

4
4

4 4 4
4

4
44
44 4 4

4

4
4 44
4
4 44
44

4
4

4

44
444

4
44

4
4

4

4
4

4
4
4

4

4

55
5

5 5

5
5

5

555 55
5

5
5

5
55

5
55

5
5 5
5555 5555

5
5

5
5
5
55 555555 55
55555

55
5

5
5

55 55 5555 5

5

555 55555

55
5
55

5 55
5

5
55

5 55555
5

5
5

5
5566 66 66 6666

77
7777

7777777777
7777

7777
777
777777

77777777777
777777

777

8
88
888

888888
8888

888
88888

88
8

88888
888

88888
888
88888

888
8888

88

Training Patterns

Figure 3: Multi-structured benchmark task. Discrete data set
with labelled input classes. (The input data is taken to be unla-
belled.)

Although the data set is labelled in the picture, the aiNet
learning is unsupervised, thus the networks are presented
with the unlabeled data. To run the networks, the follow-
ing initial value for the suppression threshold was
choosen: σs = 0.02. The parameters σs and r are decreased
geometrically by the factor α = 0.9 at each time a new
level of offspring networks (tree depth) is generated.
Table 1 summarizes the results obtained for this problem

and Fig. 5 in the Appendix depicts the tree of networks
generated, indicating the aiNet hierarchy and thus the
hierarchy contained in the data set.
Table 1 presents the cooling schedule of the suppression
threshold (σs) and inconsistency ratio (r) along with the
percentage relative compression rate (CR) of each net-
work – CR = (n. of input data)/(n. of aiNet cells), the final
number of memory cells (m), the number of iterations for
convergence (Nit), and the total number of iterations per-
formed (TNit). It can be noted from this table, that even if
all the dimensions of all networks (all branches of the
tree) were added together, the whole tree of networks has
a final dimension of 457 cells, corresponding to a final
compression rate CR = 45.20%. Note also, that the num-
ber of iterations for convergence (Nit) is close to the total
number of iterations performed (TNit). The MSE corre-
sponds to the error described in Eq. (1). Therefore, the
small values for the MSE, as presented in Table 1, suggest
that the network cells are a good representation for the
input data.

Table 1: Percentage compression rate (CR) for each network
relative to the size of the respective input data set; number of
iterations for convergence of each network (Nit); total number of
iterations simulated to achieve convergence of the stopping
criterion (TNit); final number of memory cells (m) in a branch
network; suppression threshold (σs) and inconsistency ratio (r)
at each level. See labels in Fig. 5 in Appendix.

(a) Branch levels 0 and 1.

 Tree Branch Label
 0 1-1 1-2 1-3 1-4 1-5
m 157 60 20 25 15 51
CR (%) 81.8 85.9 62.3 56.1 85.0 74.5
MSE×10-3 9.0 8.5 8.3 6.3 7.9 8.3
Nit 107 83 58 260 80 222
TNit 120 100 60 280 140 240
σs 0.02 0.018
r 2.0 1.80

(b) Branch level 2.

 Tree Branch Label
 2-1 2-2 2-3 2-4
m 28 28 23 50
CR (%) 72.55 71.13 77.00 84.57
MSE×10-3 8.56 7.89 6.96 7.02
Nit 99 51 113 119
TNit 100 60 120 160
σs 0.0162
r 1.62

The results presented in Fig. 5 reveal interesting proper-
ties of the hierarchical tree of networks. It shows primar-
ily that the method performs a separation of the clusters

whose inter-distances are largest, resulting in the follow-
ing clusters: ([2], [1,5,6], [7], [3,4], [8]). After detecting
these most distant clusters, the network learns with only
the input data mapped into these clusters. The cooling of
the suppression threshold and inconsistency ratio allowed
the networks, in the next level of the tree, to look for less
apparent dissimilarities within the previously defined
clusters. It was interesting to notice that the algorithm was
capable of separating cluster 6 from cluster 5, a task diffi-
cult even for a human observer. In the case of aiNet, this
was only possible because the algorithm generated a re-
duced number of cells to represent cluster 6 (only two
cells), which were significantly far apart from cluster 5.
Furthermore, it can be noticed that the hierarchical pat-
terns discovered by this algorithm, are similar to the per-
ception that human observers might have. For example,
we first identify the larger differences among clusters, and
then we ‘focus’ our attention on minor details. Note also,
that at each level of the network, an aiNet with an in-
creased number of cells is generated to represent a cluster.
Finally, it was observed that the network labelled 1-2
detected an element disconnected from cluster 5, what
might be interpreted as an outlier.
Fig. 4 depicts the evolution of the MSE and the number of
cells for the root and network 1-2, in the tree of Fig. 5, up
to the convergence iteration. Note that the convergence
criterion is capable of selecting the stopping iteration
when the MSE appears to be in a stationary state; the
MSE assumes a nearly asymptotical behavior. It can be
inferred from the characteristics of the stopping criterion
proposed, that the following iterations of the process were
characterized by a dramatic increase in the MSE, thus
promoting the end of the iterative process.

0 20 40 60 80 100 120
9.0

10

11

12

13

14

15

Iterations

155

160

165

170

175x 10-3 MSE (solid line) / No. of Cells (dashed line)

(a)

0 10 20 30 40 50 60 70 80 90
8.5

9.0

9.5

1.0

10.5

11.0

11.5

12.0

60

62

64

66

68

70

72

74
x 10-3

Iterations

MSE (solid line) / N o. of Cells (dashed line)

(b)

Figure 4: MSE (left-hand scale, solid curve) and number of
cells (right-hand scale, dashed curve) for the root network (a)
and network 1-2 of the tree depicted in Fig. 5(b).

7 CONCLUDING REMARKS
This paper proposed a stopping criterion for the artificial
immune network (aiNet) model, previously introduced by
de Castro and Von Zuben (2000). In addition, a hierarchi-
cal approach to training aiNet was proposed. This hierar-
chical method was empirically demonstrated to alleviate
the problem of setting up some user-defined parameters
and to allow the detection of inherent hierarchies within
the input data set. It is important to stress that the hierar-
chical approach presented here is interesting not only in
the artificial immune network context, but also from a
graph-theoretical perspective. This is because the method
describes how the aiNet and MST algorithms can be
combined in order to identify hierarchies within a data set.
Through the use of local information concerning the net-
work representation capability, it was possible to propose
a formal stopping criterion for the network learning proc-
ess that reduces the number of user-defined parameters. It
is also interesting to note that the proposed hierarchical
approach for the aiNet performs a sort of breadth-first
search (Russell & Norvig, 1995). Each cluster detected in
a given network generates an offspring network that is
expanded (generates other offsprings) until no more off-
spring (cluster) can be detected.
The practical applications of the strategies proposed in
this work are various. With larger and larger datasets
being produced, as in the area of biology for example, it is
important to devise alternative methods capable of ana-
lyzing large volumes of data in an automatic and unsu-
pervised form. In particular, the use of hierarchical struc-
tures, when dealing with large amounts of data, becomes
very important.
The result presented is a good indicator that the method
has strong potentialities to find sub-clusters within previ-
ously defined clusters. As natural further extensions of
this work, we can stress the application of the methods

(stopping criterion and hierarchical approach) to real-
world problems and their comparison with hierarchical
self-organizing feature maps, such as the ones used as
inspiration for the development of this algorithm. Also,
investigation into the development of a suitable
visualization tool for a trained aiNet, which is independ-
ent upon the dimension of the input data set, should be
pursued. Work presented in Timmis (2000) utilized graph
drawing techniques, such as spring embedded layout to
display the evolved immune networks. This may be an
interesting place to start, but when dealing with larger size
data, work in Mutton and Rodgers (2002), where graph
theory techniques are used for efficient pre-processing of
graphs and their subsequent visualization, may prove to
be a fruitful avenue of investigation.

Acknowledgments
Leandro Nunes de Castro thanks CNPq (Profix, Proc. n.
540396/01-0) for the financial support.

References
Adams, R. G., Butchart, K. & Davey, N. (1999), “Hierarchical
Classification with a Competitive Evolutionary Neural Tree”,
Neural Networks, 12, pp. 541-551.
Buczak, A. L., Wang, H. H., Darabi, H. & Jafari, M. A. (2001),
“Genetic Algorithm Convergence Study for Sensor Network
Optimization”, Information Sciences, 133, pp. 267-282.
Burnet, F. M. (1959), The Clonal Selection Theory of Acquired
Immunity, Cambridge University Press.
Cho S.-B. (1997), “Self-Organizing Map with Dynamical Node
Splitting: Application to Handwritten Digit Recognition”, Neu-
ral Computation, 9, pp. 1345-1355.
Costa, J. A. F. & Netto, M. L. A. (1999), “Automatic Data Clas-
sification by a Hierarchy of Self-Organizing Maps”, Proc. of
IEEE SMC, 5, pp. 419-424.
Costa, J. A. F. & Netto, M. L. A. (2001), “Clustering of Com-
plex Shaped Data Sets via Kohonen Maps and Mathematical
Morphology”, In: Data Mining and Knowledge Discovery:
Theory, Tools, and Technology III, B. Dasarathy (ed.). Proc. of
SPIE, 4384.
Dasgupta, D. (ed.) (1999), Artificial Immune Systems and Their
Applications, Springer-Verlag.
de Castro, L. N. & Von Zuben, F. J. (1999), “An Improving
Pruning Technique with Restart for the Kohonen Self-
Organizing Feature Map”, Proc. of the IJCNN, 3, pp. 1916-
1919.
de Castro, L. N. & Timmis, J. (2002), Artificial Immune Sys-
tems: A New Computational Intelligence Approach, Springer-
Verlag, London.
de Castro, L. N. & Von Zuben, F. J. (2000), “An Evolutionary
Immune Network for Data Clustering”, Proc. of the IEEE Bra-
zilian Symposium on Neural Networks, pp. 84-89.
de Castro, L. N. & Von Zuben, F. J. (2001), “aiNet: An Artifi-
cial Immune Network for Data Analysis”, in Data Mining: A
Heuristic Approach, Hussein A. Abbass, Ruhul A. Sarker, and

Charles S. Newton (eds.), Idea Group Publishing, USA, Chapter
XII, pp. 231-259.
de Castro, L. N. & Von Zuben, F. J. (2002), “Learning and
Optimization Using the Clonal Selection Principle”, accepted for
publication at the IEEE Transaction on Evolutionary Computa-
tion, Special Issue on Artificial Immune Systems (in print).
Erwin, E., Obermayer, K. & Schulten, K. (1992), “Self-
Organizing Maps: Ordering, Convergence Properties and En-
ergy Functions”, Biol. Cybern., 67, pp. 47-55.
Everitt, B. (1993), Cluster Analysis, Heinemann Educational
Books.
Fahlman, S. E. & Lebiere, C. (1990), “The Cascade-Correlation
Learning Architecture, In: Advances in Neural Information
Processing Systems, 2, D. S. Touretzky (ed.), Morgan Kauf-
mann, San Mateo, pp. 524-532.”
Fritzke B. (1994), “Growing Cell Structures – A Self-
Organizing Network for Unsupervised and Supervised Learn-
ing”, Neural Networks, 7(9), pp. 1441-1460.
Jain, A. K., Murty, M. N. & Flynn, P. J. (1999), “Data Cluster-
ing: A Review”, Computing Surveys 31(3), pp. 264-323.
Jerne, N. K. (1974), “Towards a Network Theory of the Immune
System”, Ann. Immunol. (Inst. Pasteur) 125C, pp. 373-389.
Kohonen T. (1982), “Self-Organized Formation of Topologi-
cally Correct Feature Maps”, Biol. Cybern., 43, pp. 59-69.
Mutton, P & Rodgers, P (2002). “Spring Embedder for Preproc-
essing for WWW Visualization”. In Proceedings Information
Visualization 2002. IVS, IEEE..
Prechelt L. (1998), “Automatic Early Stopping Using Cross
Validation: Quantifying the Criteria”, Neural Networks, 11(4),
pp. 761-767.
Ritter, H. & Schulten, K. (1988), “Convergence Properties of
Kohonen’s Topology Conserving Maps: Fluctuations, Stability,
and Dimension Selection”, Biol. Cybern., 60, pp. 59-71.
Russell, S. & Norvig, P. (1995), Artificial Intelligence: A Mod-
ern Approach, Prentice Hall.
Solomon, R. (1998), “Evolutionary Algorithms and Gradient
Search: Similarities and Differences”, IEEE Trans. on Evol.
Computation, 2(2), pp. 45-55.
Timmis, J. (2000), Artificial Immune Systems: A Novel Data
Analysis Technique Inspired by the Immune Network Theory,
Ph.D. Dissertation, Department of Computer Science, University
of Wales
Ultsch, A. (1995), “Self-Organizing Neural Networks Perform
Different from Statistical k-means”, Gesellschaft für Klassifica-
tion.
Varela, F. J., Coutinho, A. Dupire, E. & Vaz, N. N. (1988),
“Cognitive Networks: Immune, Neural and Otherwise”, Theo-
retical Immunology, Part II, A. S. Perelson (ed.), pp. 359-375.
Zahn, C. T. (1971), “Graph-Theoretical Methods for Detecting
and Describing Gestalt Clusters”, IEEE Trans. on Computers,
C-20(1), pp. 68-86.

A

pp
en

di
x

0

1-
1

1-
2

1-
3

1-
4

1-
5

2-
1

2-
2

2-
3

2-
4

Fi
gu

re
 5

: H
ie

ra
rc

hy
 o

f n
et

w
or

ks
. T

he
 id

en
tif

ic
at

io
n

of
 e

ac
h

ne
tw

or
k

in
 th

e
tre

e
is

 re
pr

es
en

te
d

by
 it

s l
ev

el
 a

nd
 se

qu
en

ce
 n

um
be

r i
n

its
 b

ot
to

m
 le

ft
pa

rt.
 T

he
 ro

ot
 n

et
w

or
k

co
rr

es
po

nd
s

to

le
ve

l 0
, t

he
 se

co
nd

 la
ye

r c
or

re
sp

on
ds

 to
 le

ve
l 1

 a
nd

 so
 o

n.

	SF298-1.pdf
	REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188
	11. SPONSOR/MONITOR’S REPORT NUMBER(S)

	Binder2.pdf
	Proceedings of ICARIS 2002.pdf
	Binder1.pdf
	0.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	INTRODUCTION
	REAL AND ARTIFICIAL IMMUNE SYSTEMS
	INITIAL INNOCULATION
	PRIMARY RESPONSE
	SECONDARY RESPONSE
	THE IMMUNE NETWORK THEORY

	BACKGROUND
	THE SSAIS
	THE STIMULATION FUNCTION
	ALLOCATING RESOURCES
	POPULATION CULLING
	CLONING MECHANISM
	THE ALGORITHM

	EXPERIMENTS AND RESULTS
	COMPLETE ANALYSES
	Trivial data
	Fisher‘s Iris data

	INCREMENTAL ANALYSES
	Trivial data
	Fisher‘s Iris data

	DISCUSSION
	FUTURE WORK
	CONCLUSIONS
	
	Acknowledgments
	References

	10.pdf
	EXPERIMENTS
	EXPERIMENTAL SETUP
	Generating self data
	Setting the matching threshold
	Mutation probability
	Detector life-time indicator

	THE BOTTLENECK FOR NEGATIVE SELECTION

	ANALYSIS AND DISCUSSION
	CONCLUSIONS
	
	Acknowledgments
	We would like to thank NCR FSG for their continued financial support and valuable input into this research. Leandro N. de Castro would like to thank CNPq (Profix 540396/01-0) for their financial support.
	References

	11.pdf
	Introduction
	Extension of GDGA for Higher Alphabet Size
	Results
	Time Series Data
	Assembler Instruction Data
	Single Mutation
	File Infector

	System Call Data
	Intrusion detection based on login system call trace
	False positives

	Discussion
	Situation favouring m-ary GDGA
	Choosing the matching length

	Conclusions
	Future Work
	
	Acknowledgments
	References

	12.pdf
	INTRODUCTION
	THE PROBLEMS WITH SELF AND NON-SELF
	A VERY ARTIFICIAL MODEL TO DISTINGUISH THE TWO VISIONS
	THE SELF-RECOGNITION VIEW
	THE SELF-ASSERTION VIEW

	TAKING AN ENGINEERING PERSPECTIVE
	CONCLUSIONS
	
	References

	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	INTRODUCTION
	BACKGROUND RESEARCH ON AIRS
	IMMUNE PRINCIPLES EMPLOYED
	THE AIRS ALGORITHM
	RESULTS AND DISCUSSION

	A MORE EFFICIENT AIRS
	OBSERVATIONS
	The ARB Pool
	Mutation of Cells

	AIRS: WHAT IS NEW?
	Memory Cell Evolution
	Somatic Hypermutation

	THE AIRS V2 ALGORITHM
	RESULTS AND DISCUSSION

	COMPARATIVE ANALYSIS
	CLASSIFICATION ACCURACY
	DATA REDUCTION
	A WORD ABOUT SIMPLICITY

	CONCLUSIONS AND FUTURE WORK
	
	References

	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	Introduction
	Mathematical Basis
	General Approach
	Center Approach
	Adaptive Approach

	Interval AIS for Surveillance the Plague
	Significant Factors and the Characteristics of Plague Processes
	The tasks of Pattern Recognition
	Supervised Learning
	Foldering vectors to matrices
	Learning
	Recognition

	Unsupervised Learning

	Interval AIS for Security System
	Conclusions
	
	Acknowledgments
	References

	26.pdf
	INTRODUCTION
	CLUSTER ANALYSIS AND COMPETITIVE LEARNING
	aiNet DESCRIPTION
	EXTRACTING THE CLUSTERS

	CONVERGENCE PROPERTIES
	THE MSE AND NETWORK SIZE
	THE ROLE OF CROSS-VALIDATION IN SUPERVISED LEARNING
	A STOPPING CRITERION FOR aiNet

	A HIERARCHY OF aiNets
	AN ILLUSTRATIVE EXAMPLE
	CONCLUDING REMARKS
	
	Acknowledgments
	References

